Воздушные винты-ликбез

Материал из Multicopter Wiki
(Различия между версиями)
Перейти к: навигация, поиск
 
(не показаны 45 промежуточных версий 13 участников)
Строка 5: Строка 5:
 
Воздушный винт (ВВ) это разновидность осевой крыльчатки для создания реактивной тяги----более подробно смотри статью "теория пропульсивных систем"!
 
Воздушный винт (ВВ) это разновидность осевой крыльчатки для создания реактивной тяги----более подробно смотри статью "теория пропульсивных систем"!
  
  ВВ открытого типа называется пропеллер и имеет (2--4) лопасти! ВВ закрытого типа в трубе-туннели называется импеллер и имеет уже (5--12) лопаток для авиамоделей  
+
  ВВ открытого типа называется пропеллер и имеет (2--4) лопасти! ВВ закрытого типа в трубе-туннели называется импеллер и имеет уже (5--12) лопаток для авиамоделей[https://www.youtube.com/watch?v=TevzAAx-kBE]
  
Так как до сих пор нет единой теории винта и крыла ----а лишь физические модели основанные на разных законах физики-----например реактивная на третьем законе  Ньютона, или закон Бернулли из термодинамики, или аэродинамическая на теории Жуковского,  получается что то приближенное  к практике с поправочными коэффициентами . Каждая фирма производитель использует свою математическую модель проектирования лопастей, то есть профиля, форма, крутка  и в зависимости от  условий работы винты имеют богатое разнообразие для различных классов летательных и водоплавающих аппаратов!
+
Так как до сих пор нет единой теории винта и крыла ----а лишь физические модели основанные на разных законах физики-----например реактивная на третьем законе  Ньютона, или закон Бернулли из термодинамики, или аэродинамическая на теории Жуковского,  получается что то приближенное  к практике с поправочными коэффициентами . Каждая фирма производитель использует свою математическую модель проектирования лопастей, то есть профиля, форма, крутка  и в зависимости от  условий работы винты имеют богатое разнообразие для различных классов летательных и водоплавающих аппаратов! [https://www.youtube.com/watch?v=UWoXFdRhPKc]
  
 
  В авиамоделизме размеры диаметр-D и шаг-H в дюймах (1дюйм=2.54см) и кол-во лопастей-n и условно принято обозначать как DxHxn ---например 5х4x3!!!  
 
  В авиамоделизме размеры диаметр-D и шаг-H в дюймах (1дюйм=2.54см) и кол-во лопастей-n и условно принято обозначать как DxHxn ---например 5х4x3!!!  
Строка 34: Строка 34:
 
Соотношение геометрического  шага Н к диаметру D воздушного винта определят пик эффективности в разных режимах полёта---
 
Соотношение геометрического  шага Н к диаметру D воздушного винта определят пик эффективности в разных режимах полёта---
  
1)для висючек типа мультироторных платформ Н/D=0.24 получается максимальная удельная тяга для тяжелых аппаратов!
+
1)для висючек типа больших мультироторных платформ Н/D=0.24 получается максимальная удельная тяга для тяжелых аппаратов!
 
   
 
   
2)Н/D = 0.38 максимальный упор на стопе и при малой поступательной скорости хорош для дирижаблей, мото-парителей и аэрошютов , где нужно медленно, но уверено ползти в крутую горку!
+
2)коптерный Н/D = 0.38 максимальный упор на стопе и при малой поступательной скорости хорош для дирижаблей, мото-парителей и аэрошютов , где нужно медленно, но уверено ползти в крутую горку!
 
   
 
   
3)Н/D=0.62 для тренеров, пилотаг, конвертопланов и автожиров, где оптимальное соотношение тяги на стопе и средней скорости полёта при средней энерговооруженности ---максимум скороподъёмности и высший пилотаж при высоком коэф. мощности!
+
3)пилотажный Н/D=0.62 для тренеров, пилотаг, конвертопланов и автожиров, где оптимальное соотношение тяги на стопе и средней скорости полёта при средней энерговооруженности ---максимум скороподъёмности и высший пилотаж при высоком коэф. мощности!
  
4)Н/D =1 или квадратный винт хорош для скоростного боевого пилотажа и высокого крейсера!!!
+
4)гоночный Н/D =1 или квадратный винт хорош для скоростного боевого пилотажа, гонки и высокого крейсера!!!
 
   
 
   
5)Н/D=1.62 для пиковых максимальных скоростей типа гонки, для гребных винтов и низкоскоростных импеллеров!
+
5)скоростной Н/D=1.62 для пиковых максимальных скоростей у гребных винтов и низкоскоростных импеллеров!
  
 
6)Н/D=2.62 уже для больших скоростей  у вв на высоте и импеллеров средней скорости!
 
6)Н/D=2.62 уже для больших скоростей  у вв на высоте и импеллеров средней скорости!
Строка 77: Строка 77:
  
  
  КПД пропульсивной системы полёта (внешний кпд) это соотношение поглощённой мощности планером к мех. мощности на валу! КПДвнеш = Fx Vпол /  M w
+
  КПД пропульсивной системы в полёте (внешний кпд) это соотношение поглощённой мощности планером к мех. мощности на валу! КПДвнеш = Fx Vпол /  M w
  
 
   
 
   
На практике  начальный кпд или КПДво воздушных винтов в большой авиации 0.95 или 95% обусловлен огромными габаритами диаметром 5-6 метров, много лопастностью 4-8штук, узкими с большим удлинением лопастями и большим числом Рейнольдса более пяти миллионов, низким профильным сопротивлением, малой шероховатостью и низкой частотой вращения 660-780 об/мин и большим относительным шагом, как соотношение шага к диаметру 2.5-3 раза и в полёте  имеет полный кпд около 90% при горизонтальной скорости полёта 700-900 км в час!
+
На практике  начальный кпд или КПДво воздушных винтов в большой авиации 0.95 или 95% обусловлен огромными габаритами диаметром 5-6 метров, много лопастностью 4-8штук, узкими с большим удлинением лопастями и большим числом Рейнольдса более пяти миллионов, низким профильным сопротивлением, малой шероховатостью и низкой частотой вращения 660-780 об/мин и большим относительным шагом, как соотношение шага к диаметру 2.5-3 раза и в полёте  имеет полный внешний кпд около 90% при горизонтальной скорости полёта 700-900 км в час!
  
 
В средней авиации  и БПЛА типа "мегадрон" кпд в полёте около 85% при РЕ=3 500 000, так как меньше габариты диаметром 3-4 метра и больше частота вращения 900-1000  при скоростях 500-600 км в час!
 
В средней авиации  и БПЛА типа "мегадрон" кпд в полёте около 85% при РЕ=3 500 000, так как меньше габариты диаметром 3-4 метра и больше частота вращения 900-1000  при скоростях 500-600 км в час!
  
в малой авиации  реальный кпд=80% не более при оборотах 1500-1800, диаметр 2-2.5 метра при скорости 300-400 км в час!
+
в малой авиации динамический кпд=80% не более при оборотах 1500-1800, диаметр 2-2.5 метра при скорости 300-400 км в час!
  
 
у сла и "максидрон" реальный кпд=75% при 2000-3000 и диаметр 1.4-1.8м при 180-250 км в час !
 
у сла и "максидрон" реальный кпд=75% при 2000-3000 и диаметр 1.4-1.8м при 180-250 км в час !
+
------------------------------------------------------------------------------------------------------------------------------------------------------
на гигантских авиамоделях и "мидидрон" кпд=70% при д=65-100см (26-40дюйм) при 4000-5000 120-160 км/час!
+
на гигантских авиамоделях и "мидидрон" кпд=70% при д=65-100см (26-40дюйм)   4000-5000 при 120-160 км/час!
  
 
на больших авиамоделях  кпд=65%  при д=40-60см (16-24дюйм) ---- 6000-7000 при 85-110 км/ч!
 
на больших авиамоделях  кпд=65%  при д=40-60см (16-24дюйм) ---- 6000-7000 при 85-110 км/ч!
  
на авиамоделях средних размеров и "минидрон" кпд =60% при д=25-38см (10-15дюйм)-----8000-9000 при 65-80 км/ч!
+
на авиамоделях средних размеров и "минидрон" кпд=60% при д=25-38см (10-15дюйм)-----8000-9000 при 65-80 км/ч!
  
 
на малых авиамоделях аля паркфлаеры и "микродрон" кпд=55% при д=15-23см (6-9дюйм) ----10 000-12000 при 45-60 км/ч!
 
на малых авиамоделях аля паркфлаеры и "микродрон" кпд=55% при д=15-23см (6-9дюйм) ----10 000-12000 при 45-60 км/ч!
 
+
------------------------------------------------------------------------------------------------------------------------------------------------------
 
детские летающие игрушки кпд=50% при д=10-13см (4-5дюйм)----13 000-15 000 при 35-40 км/ч
 
детские летающие игрушки кпд=50% при д=10-13см (4-5дюйм)----13 000-15 000 при 35-40 км/ч
  
Строка 102: Строка 102:
 
для судомоделей гребные винты имеют кпд=30-35% при д=2.5-4см (1-1.6дюйм)
 
для судомоделей гребные винты имеют кпд=30-35% при д=2.5-4см (1-1.6дюйм)
  
Падение КПД винта при уменьшении диаметра объясняется увеличением частоты вращения для создания необходимой тяги и значит растут центробежные силы толкающие пограничный слой вдоль лопасти от центра к периферии---это вызывает повышение сил трения потока о поверхность пропеллера и потерянная мощность на паразитное закручивание потока!!!
+
Падение внешнего КПД винта при уменьшении диаметра объясняется увеличением частоты вращения для создания необходимой тяги и значит растут центробежные силы толкающие пограничный слой вдоль лопасти от центра к периферии---это вызывает повышение сил трения потока о поверхность пропеллера и потерянная мощность на паразитное закручивание потока!!!
  
 
   
 
   
Строка 118: Строка 118:
  
 
Разница между геометрическим шагом Н и поступью h задаёт скольжение!
 
Разница между геометрическим шагом Н и поступью h задаёт скольжение!
Так как угол атаки лопасти к набегающему  потоку  в горизонтальном полёте зависит только  от относительного скольжения Кскол=(Н-h)/Н=1-Купор, а само скольжение зависит от режима полёта или потребной тяги то получается, что для квадратного винта
+
Так как угол атаки лопасти к набегающему  потоку  в горизонтальном полёте зависит только  от относительного скольжения Кскол=(Но-h)/Но=1-Купор, а само скольжение зависит от режима полёта или потребной тяги то получается, что для квадратного винта
  
 
При пикировании в 30гр винт полностью разгружен и скольжение равно нулю и угол атаки нулевой и нет тяги---вырождение тяги при полном газе
 
При пикировании в 30гр винт полностью разгружен и скольжение равно нулю и угол атаки нулевой и нет тяги---вырождение тяги при полном газе
Строка 157: Строка 157:
 
Так как тяга винта для самолётов не играет существенной роли от  стопа до скорости сваливания, то шаг  подбирается так, чтобы срыв потока на лопастях пропадал именно на границе сваливания ла, называется подхват----то есть на стопе мотор немного перегружен по моменту сопротивления при винте фиксированного шага (ВФШ), чем выше нагрузка на крыло тем больше скорость сваливания  и крейсер!
 
Так как тяга винта для самолётов не играет существенной роли от  стопа до скорости сваливания, то шаг  подбирается так, чтобы срыв потока на лопастях пропадал именно на границе сваливания ла, называется подхват----то есть на стопе мотор немного перегружен по моменту сопротивления при винте фиксированного шага (ВФШ), чем выше нагрузка на крыло тем больше скорость сваливания  и крейсер!
  
И поэтому для каждого режима полета есть оптимальный относительный шаг, а также форма и профиль лопастей , когда эффективность винта максимальна
+
И поэтому для каждого режима полета есть оптимальный относительный шаг, а также форма и профиль лопастей, когда внешняя эффективность винта максимальна
  
1) Пик тяги рассчитанный на скорость планирования с АКмах или Кск=(1.2--1.3) скорости сваливания даёт максимальную  скороподъёмность типичное соотношение шага к диаметру Кв=H/D=(0.6--0.7) при КПДв=60%--63% соответственно---режим боевого пилотажа с минимальными радиусами виража и петли
+
1) Пик тяги рассчитанный на скорость планирования с АКмах или Кск=(1.2--1.3) скорости сваливания даёт максимальную  скороподъёмность типичное соотношение шага к диаметру Кв=H/D=(0.6--0.7) при КПДвнеш=60%--63% соответственно---режим боевого пилотажа с минимальными радиусами виража и петли
  
2) Высокий крейсер или Кск=(1.6---2.0) скорости сваливания дает пик кпд на винте с Кв=(0.8--0.9) при КПДв=65%--67%---режим круиза для бпла
+
2) Высокий крейсер или Кск=(1.6---2.0) скорости сваливания дает пик кпд на винте с Кв=(0.8--0.9) при КПДвнеш=65%--67%---режим круиза для бпла
 
   
 
   
3) Пик скорости на гоночных ла или Кск=(3--4) и  Кв=(1.0--1.2) при КПДв=69%--71%--правда долго разбегаться будет при винте фиксированного шага---режим гонки или нужен дополнительный ускоритель в виде тягача, или резиновая катапульта,  или пороховой  двигатель, или сразу ВИШ !
+
3) Пик скорости на гоночных ла или Кск=(3--4) и  Кв=(1.0--1.2) при КПДвнеш=69%--71%--правда долго разбегаться будет при винте фиксированного шага---режим гонки или нужен дополнительный ускоритель в виде тягача, или резиновая катапульта,  или пороховой  двигатель, или сразу ВИШ !
 
   
 
   
4) Тяговые винты с  Кв=(0.4--0.5) типа коптерный "слоуфлай"  имеет смысл использовать лишь в случае  пика тяги на стопе (3Д-пилотаж), когда приходиться вертикально стартовать с малых площадок  и быстро набрать безопасную высоту---- правда эффективность этих винтов в горизонтальном полете очень низка при КПДв=40%-50%---поэтому выгодней летать импульсами----короткий крутой набор высоты с углом 60-90 град потом долгое планирование с максимальным аэрокачеством--- процесс повторяется с высоты (50--60)м  и до (300--500)м для мотопланеров  !
+
4) Тяговые винты с  Кв=(0.4--0.5) типа коптерный "слоуфлай"  имеет смысл использовать лишь в случае  пика тяги на стопе (3Д-пилотаж), когда приходиться вертикально стартовать с малых площадок  и быстро набрать безопасную высоту---- правда эффективность этих винтов в горизонтальном полете очень низка при КПДвнеш=40%-50%---поэтому выгодней летать импульсами----короткий крутой набор высоты с углом 60-90 град потом долгое планирование с максимальным аэрокачеством--- процесс повторяется с высоты (50--60)м  и до (300--500)м для мотопланеров  !
  
 
Оптимизация лопасти авиамодельного ВВ  
 
Оптимизация лопасти авиамодельного ВВ  
Строка 181: Строка 181:
 
Практика замеров
 
Практика замеров
  
Тяга пропеллера на стопе-----Fст=0.112 n^0.5 Сулоп^1.5 D^3 Н fст^2, где n-количество лопастей (2--4)шт.и Сулоп коэф. подъёмной силы профиля лопасти!
+
Сила тяги вв прямо пропорциональна плотности воздуха ро, кол-во лопастей (n^0.67), профилю лопасти Сумах и обратно удлинению лопасти Куд---Кпроп
  
для двухлопастного скоростного вв с плосковыпуклым профилем Сулоп=(1.2--1.3) для узких лопастей Куд=(9--10)-----Fсамолёт=(0.22--0.25) D Н (D fст)^2!
+
Тяга пропеллера на стопе на уровне моря-----Fст=0.9(D h fст)^2=Квв D Н (D fст)^2, где fст ---частота вращения винта на стопе в оборотах в секунду!!!
  
  с слабо вогнутовыпуклым профилем  Сулоп=(1.4--1.5) для нормальных лопастей Куд=(7--8) -----Fунив=(0.28--0.31) D Н (D fст)^2!
+
  для двух-лопастного скоростного вв с тонким плосковыпуклым Сулоп=(1.0--1.1) и Кв=(0.9--1.1)-----Fгонка=0.18 D Н (D fст)^2 и h=0.45(D Н)^0.5
  
  с сильно вогнутовыпуклым профилем типа "слоуфлаер" Сулоп=(1.6--1.7) для широких лопастей Куд=(5--6)-----Fкоптер=(0.34--0.38) D Н (D fст)^2!
+
  с толстым плосковыпуклым профилем Сулоп=(1.2--1.3) для узких лопастей Куд=(10--9) и Кв=(0.7--0.8)----Fсамолёт=0.225 D Н (D fст)^2 и h=0.5(D Н)^0.5
  
Все производители моторов рекомендуют диаметр и шаг допустимых винтов, тогда достаточно замерить тягу безменом и частоту вращения винта оптическим тахометром прямо на модели на стопе-----например винт слоу-флаер 10/4 или D=254мм и H=102мм!
+
со слабо вогнутовыпуклым  Сулоп=(1.4--1.5) для нормальных лопастей Куд=(8--7) и Кв=(0.5--0.6) -----Fпилотаж=0.27 D Н (D fст)^2 и h=0.55(D Н)^0.5
Проблема в том, что разные производители пропеллеров указывают разный параметр шага винта (второе значения в дюймах, первое это диаметр----некоторые пишут максимальный шаг нулевой тяги, другие геометрический шаг, третьи поступь винта на стенде!
+
 
 +
с сильно вогнутовыпуклым "слоуфлаер" Сулоп=(1.6--1.8) для широких лопастей Куд=(6--5) и Кв=(0.3--0.4)-----Fкоптер=0.32 D Н (D fст)^2 и h=0.6(D Н)^0.5
 +
 
 +
для трёхлопастного вв тяга в (0.5n)^0.67=1.5^0.67=1.3 раза больше------для четырёхлопастного вв тяга в 2^0.67=1.6 раза больше, чем у двухлопастного!!!
 +
 
 +
Все производители моторов рекомендуют диаметр и шаг допустимых винтов, тогда достаточно замерить тягу безменом и частоту вращения винта оптическим тахометром прямо на модели на стопе-----например винт 10х5 или D=254мм и H=127мм!
 +
Проблема в том, что разные производители пропеллеров указывают разный параметр шага винта (второе значения в дюймах, первое это диаметр----некоторые пишут максимальный шаг нулевой тяги-Но=1.25Н, другие геометрический шаг, третьи поступь винта-h на стопе!
 
Поэтому только практические  замеры тяги и оборотов на стопе дадут истинную картину хар-ки винта!!!
 
Поэтому только практические  замеры тяги и оборотов на стопе дадут истинную картину хар-ки винта!!!
  
1) поступь винта на стопе у моря равна соотношению квадратного корня из 1.1   силы тяги к произведению диаметра на частоту h=(1.1Fст)^0.5/(Dfст) характеристика №1---- например (1.1х5.3н)^0.5/( 0.254м х 100гц)=2.41/25.4=0.0952м=95мм -----осевая скорость потока в плоскости винта на стопе это произведение поступи на частоту Vв=h fст=0.0952м х 100гц=9.52м/с, где частота вращения пропеллера на стопе fст(об/сек)= 0.63 Uакку Кv(об/мин B)/60=0.63 х 11.1В х 840/60=100Гц!
+
1) К1 поступь винта на стопе у моря равна соотношению квадратного корня из 1.1 силы тяги к произведению диаметра на частоту h=(1.1Fст)^0.5/(Dfст) характеристика №1---- например (1.1х5.3н)^0.5/( 0.254м х 100гц)=2.41/25.4=0.0952м=95мм -----осевая скорость потока в плоскости винта на стопе это произведение поступи на частоту Vв=h fст=0.0952м х 100гц=9.52м/с
  
2) соотношение тяги к квадрату частоты Fст/f^2 есть х-ка №2 по тяге для винта постоянного шага  Например при тяге в 530 г силы делить (100 гц)^2 получаем 0.053 г/гц2 или 0.00053н/гц2 --- потом просто пересчитывается тягу на другую частоту вращения!
+
2) К2 аэродинамическая тяжесть ВВ по тяге это соотношение тяги к квадрату частоты Fст/f^2 есть х-ка №2 по тяге для винта постоянного шага  Например при тяге в 530 г силы делить (100 гц)^2 получаем 0.053 г/гц2 или 0.00053н/гц2 --- потом просто пересчитывается тягу на другую частоту вращения!красная
  
3) соотношение мощности потока на стопе к кубу частоты вращения Pст/f^3---это х-ка №3 винта по мощности потока
+
3) К3 аэродинамическая тяжесть ВВ по мощности это соотношение мощности потока на стопе к кубу частоты вращения Pст/f^3---это х-ка №3 винта по мощности потока
 
можно рассчитать как произведение х-ки№2 тяги на поступь винта на стопе  ----самая главная характеристика винта!!!
 
можно рассчитать как произведение х-ки№2 тяги на поступь винта на стопе  ----самая главная характеристика винта!!!
 
например  0.00053н/гц2 х 0.0952 м =0.0000504дж/гц2, тогда Рпот=0.0000504дж/гц2 х (100гц)^3=50.4вт!
 
например  0.00053н/гц2 х 0.0952 м =0.0000504дж/гц2, тогда Рпот=0.0000504дж/гц2 х (100гц)^3=50.4вт!
Тогда электрическая потребляемая Рэл=Рпот/КПДвмг=50.4вт/0.66=75.6вт!!!
+
Тогда механическая мощность на валу Рмех=Рпот/КПДвнут=50.4/0.85=59вт!!!синяя
 +
 
 +
[[Файл:Тяга и моща вв.jpg]]
  
 
4) аэродинамическое качество винта ---- это соотношение  длины окружности диаметра винта к шагу
 
4) аэродинамическое качество винта ---- это соотношение  длины окружности диаметра винта к шагу
АКВ =3.14 х D / H ----например 3.14 х 0.254 м / 0.1м=8 единиц, тогда окружная скорость кончиков лопастей будет в в 8 больше осевой скорости потока в полёте, то есть 8х15м/с=120м/с меньше 270 м/с
+
АКВ =3.14 х D / H ----например 3.14 х 0.254 м / 0.1м=8 единиц, тогда окружная скорость кончиков лопастей будет в в 8 больше осевой скорости потока в полёте, то есть 8х9.5м/с=76м/с меньше 270 м/с!
  
 
5) число Рейнольдса для лопасти должно превышать 60 000----Re=162bDf , где b-ширина лопасти на 0.75 радиуса в мм, D-диаметр винта в м, f-частота вращения в обор/сек
 
5) число Рейнольдса для лопасти должно превышать 60 000----Re=162bDf , где b-ширина лопасти на 0.75 радиуса в мм, D-диаметр винта в м, f-частота вращения в обор/сек
например при ширине лопасти 15мм и диаметр 230мм и частоте 6.6 тысяч об/мин или 110 гц  получаем 162х15х0.23х110=61 667!!!
+
например при ширине лопасти 17мм и диаметр 230мм и частоте 6 000 об/мин или 100 гц  получаем 162х17х0.23х100=61 667!!!
  
упрощённо для двухлопастных винтов самолётов с плосковыпуклым профилем с Кв=0.8 сила тока на стопе ----Iсам =0.7Fст Н Kv/60 !
 
 
 
 
 
упрощённо для двухлопастных винтов мультикоптеров с вогнутовыпуклым профилем с Кв=0.4 сила тока на стопе ----Iкоп =0.9 Fст Н Kv/60 !
 
 
 
например  для коптерного винта с шагом=10см на полном газу---0.9 х 5.3Н х 0.1м х 840об/мин/В/60 = 6.7А сила тока!
 
тогда сразу подбирается мотор с потребляемым током не менее 7А и соответствующий регулятор хода
 
  
 
   
 
   
Потребляемая электромощность  вмг на стопе ( Ватт) приближенно равна произведению силы тяги (Ньютон) на максимальную теоретическую скорость потока от винта (метры/сек) (геометрический шаг(метр) х частоту вращения под нагрузкой (обор/сек=Герц)!
+
Потребляемая электромощность  ВМГ на стопе ( Ватт) приближенно равна произведению силы тяги на стопе (Ньютон) на теоретическую скорость потока от винта (метры/сек) или (геометрический шаг(метр) х частоту вращения под нагрузкой (обор/сек=Герц)!
  
 
  Pэл=Fст Vтеор=Fст Н fст=Uакку Iст-----это самая главная формула для электро-авиамоделей самолётов !
 
  Pэл=Fст Vтеор=Fст Н fст=Uакку Iст-----это самая главная формула для электро-авиамоделей самолётов !
 +
 +
например Рэл=5.3Н х 0.127м х 100Гц=5.3Н х 12.7м/с=67.2вт=6А х 11.2В
  
 
на практике зная четыре переменных всегда можно найти пятую неизвестную с точностью + -10%---например
 
на практике зная четыре переменных всегда можно найти пятую неизвестную с точностью + -10%---например
Строка 238: Строка 241:
 
Цены  на  пропеллеры  в магазине одного типоразмера  могут различаться  в 4-5 раз------объясняется это в первую очередь брендом, материалом и качеством исполнения!
 
Цены  на  пропеллеры  в магазине одного типоразмера  могут различаться  в 4-5 раз------объясняется это в первую очередь брендом, материалом и качеством исполнения!
 
Самое главное это симметричность геометрии лопастей для динамической балансировки и  моменты инерции для статической балансировки-----обычно дорогие  изначально  сбалансированы, но лучше сразу в магазине проверить магнитным балансиром или хотя бы на отвертке----если дисбаланс большой, то лучше не покупать !
 
Самое главное это симметричность геометрии лопастей для динамической балансировки и  моменты инерции для статической балансировки-----обычно дорогие  изначально  сбалансированы, но лучше сразу в магазине проверить магнитным балансиром или хотя бы на отвертке----если дисбаланс большой, то лучше не покупать !
Жесткость лопастей на кручение должны соответствовать частоте вращения------например для медленных слоуфлаеров небольшая эластичность допускается, а для скоростных это неприемлемо  может зафлаттерить-----при вибрациях разрушается пограничный слой на профиле и правильное обтекание лопасти,что приводит к резкому падению тяги и кпд вмг в целом!
+
Жесткость лопастей на кручение должны соответствовать частоте вращения------например для медленных слоуфлаеров небольшая эластичность допускается, а для скоростных это неприемлемо  может зафлатерить-----при вибрациях разрушается пограничный слой на профиле и правильное обтекание лопасти,что приводит к резкому падению тяги и кпд вмг в целом!
 
В профессиональной авиации обычно используются винты из легких металлических сплавов или угле-стекло-композитов----
 
В профессиональной авиации обычно используются винты из легких металлических сплавов или угле-стекло-композитов----
 
в хобби широко распространены монолитные деревянные винты из твёрдых сортов и из термопластиков с прочными армирующеми нитями  ----в авиамоделизме металлические пропеллеры строго запрещены!
 
в хобби широко распространены монолитные деревянные винты из твёрдых сортов и из термопластиков с прочными армирующеми нитями  ----в авиамоделизме металлические пропеллеры строго запрещены!
Строка 251: Строка 254:
 
Самым слабым звеном складных лопастей является комля с вращающейся осью---так как центробежные силы приходят на очень малую площадь контакта, то ни в коем случае нельзя превышать предельную частоту вращения винта иначе опасный отстрел лопасти и страшное биение вмг !
 
Самым слабым звеном складных лопастей является комля с вращающейся осью---так как центробежные силы приходят на очень малую площадь контакта, то ни в коем случае нельзя превышать предельную частоту вращения винта иначе опасный отстрел лопасти и страшное биение вмг !
  
  Центробежная сила на разрыв ----Fцб(Н)= mлоп(кг) Rцм(м) w^2, где круговая частота w(рад/с)=2ПИ f(Гц), и радиус до центра масс одной лопасти Rцм(м)
+
  Центробежная сила на разрыв ----Fцб(Н)=1.3 mлоп(кг) Rцм(м) w^2, где круговая частота w(рад/с)=2ПИ f(Гц), и радиус до центра масс одной лопасти Rцм(м)
  
например складной винт 7х5 имеет лопасть массой в 4г=0.004кг и цм лопасти от оси вращения вала 4см=0.04м,тогда Fцб(Н)=0.004кг х (6.28 х 200 об/с)^2 х 0.04м=0.00016кгм х (1256 рад/с)^2= 0.00016 х 1 577 536=252Н=25кгс!!!
+
например складной винт 7х5 имеет лопасть массой в 4г=0.004кг и цм лопасти от оси вращения вала 4см=0.04м,тогда Fцб(Н)=1.3 х 0.004кг х (6.28 х 200 об/с)^2 х 0.04м=0.00016кгм х (1256 рад/с)^2= 0.00016 х 1 577 536=330Н=33кгс---- для современных пластмасс при модуле разрушения на разрыв 10кгс/мм2 и запасе прочности 1.62 получаем не менее 5мм2 сечения комли лопасти в узле складывания!!!
  
 
Так если на стенде на полном газу частота вращения не превышает предел, то при пикировании на полном газу винт облегчается и мотор может повысить обороты в 1.2 раза от стопа и центробежная сила на разрыв увеличится в 1.44 раза и приведёт к разрушению ступицы или комли лопасти!!!
 
Так если на стенде на полном газу частота вращения не превышает предел, то при пикировании на полном газу винт облегчается и мотор может повысить обороты в 1.2 раза от стопа и центробежная сила на разрыв увеличится в 1.44 раза и приведёт к разрушению ступицы или комли лопасти!!!
Строка 259: Строка 262:
 
например промышленные хабы и лопасти отлитые из термопластика----
 
например промышленные хабы и лопасти отлитые из термопластика----
  
1) винт диаметром 305мм и шагом 230мм имеет гарантированный предел в 6 000 оборотов в минуту
+
1) винт 12х9 диаметром 305мм и шагом 230мм имеет гарантированный предел в 6 000 оборотов в минуту при тяге на стопе на уровне моря 15Н=1.5кгс
 
   
 
   
2) винт диаметром 280мм и шагом 205мм имеет  предел ----7 000 об/мин
+
2) винт 11х8 диаметром 280мм и шагом 205мм имеет  предел ----7 000 об/мин при тяге на стопе 13Н=1.3кгс
 
   
 
   
3) винт д255мм ш180мм ---- 8 000
+
3) 10х7 д255мм ш180мм ---- 8 000 и 11н=1.1кгс
 
   
 
   
4) винт д230мм ш160мм ----9 000  
+
4) 9х6.3 д230мм ш160мм ----9 000 и 10н
  
5) д200мм ш150мм ----10 000
+
5) 8х6 д200мм ш150мм ----10 000----9н
  
6) д190мм ш140мм ----11 000
+
6) 7.5х5.5 д190мм ш140мм ----11 000----8н
  
7) д180мм ш130мм ----12 000----
+
7) 7х5 д180мм ш130мм ----12 000----
  
8) д170мм ш120мм ----13 000----
+
8) 6.8х4.8 д170мм ш120мм ----13 000----
  
9) д160мм ш110мм ----14 000---
+
9) 6.3х4.4 д160мм ш110мм ----14 000---5.5н
  
10) д150мм ш100мм ----15 000---
+
10) 6х4 д150мм ш100мм ----15 000---
 
   
 
   
 
[[Файл:складной.jpg]]
 
[[Файл:складной.jpg]]
Строка 301: Строка 304:
 
импеллер  или  многолопастный винт с малым диаметром и относительно  большим шагом в профилированной трубе ---это преобразователь механической мощности вращения в кинетическую мощность потока с высокой выходной скоростью и относительно малой тягой
 
импеллер  или  многолопастный винт с малым диаметром и относительно  большим шагом в профилированной трубе ---это преобразователь механической мощности вращения в кинетическую мощность потока с высокой выходной скоростью и относительно малой тягой
 
    
 
    
1) типичный относительный шаг многолопастного винта 3-4 диаметра в больших турбовентиляторных двигателях и (1.5--2) у авиамодельных импеллерах-----чем больше относительный шаг, тем больше кол-во лопастей по тождеству  n=(3--5)(H/D)!
+
1) типичный относительный шаг многолопастного винта 3-4 диаметра в больших турбовентиляторных двигателях и (1.5--2) у авиамодельных импеллерах-----чем больше относительный шаг, тем больше кол-во лопастей по тождеству  n=(3--5)(H/D)![https://www.youtube.com/watch?v=s9MJMSYa_2k]
  
 
2) желательно чтобы кол-во лопастей в крыльчатке было больше и не кратно спрямляющим лопаткам ---например 4 лопасти и 3 лопатки или 6 лопастей и 5 лопаток----это связанно с частотой и амплитудой паразитной пульсацией локальных скачков давления между лопастью и лопаткой---чем тише и выше  по тону звук, тем выше кпд импеллера !
 
2) желательно чтобы кол-во лопастей в крыльчатке было больше и не кратно спрямляющим лопаткам ---например 4 лопасти и 3 лопатки или 6 лопастей и 5 лопаток----это связанно с частотой и амплитудой паразитной пульсацией локальных скачков давления между лопастью и лопаткой---чем тише и выше  по тону звук, тем выше кпд импеллера !
Строка 312: Строка 315:
 
5) соотношение входного сечения импеллера к полному миделю самолёта  (0.2--0.25) для реактивных полукопий!
 
5) соотношение входного сечения импеллера к полному миделю самолёта  (0.2--0.25) для реактивных полукопий!
  
читай статью "история импеллера"
+
читай статью "история импеллера"-----
  
 
Особенности применения импеллеров для реалистического полёта----
 
Особенности применения импеллеров для реалистического полёта----
Строка 329: Строка 332:
  
 
7)коэф. перекрытия лопастей не менее 0.6
 
7)коэф. перекрытия лопастей не менее 0.6
 +
 +
управляемый вектор тяги---[https://www.youtube.com/watch?v=5or-egAm_4g]
  
 
[[Файл:импеллер.jpg]]
 
[[Файл:импеллер.jpg]]

Текущая версия на 16:56, 15 ноября 2024

Воздушные винты-----автор Книжников ВВ

Определение

Воздушный винт (ВВ) это разновидность осевой крыльчатки для создания реактивной тяги----более подробно смотри статью "теория пропульсивных систем"!

ВВ открытого типа называется пропеллер и имеет (2--4) лопасти! ВВ закрытого типа в трубе-туннели называется импеллер и имеет уже (5--12) лопаток для авиамоделей[1] 

Так как до сих пор нет единой теории винта и крыла ----а лишь физические модели основанные на разных законах физики-----например реактивная на третьем законе Ньютона, или закон Бернулли из термодинамики, или аэродинамическая на теории Жуковского, получается что то приближенное к практике с поправочными коэффициентами . Каждая фирма производитель использует свою математическую модель проектирования лопастей, то есть профиля, форма, крутка и в зависимости от условий работы винты имеют богатое разнообразие для различных классов летательных и водоплавающих аппаратов! [2]

В авиамоделизме размеры диаметр-D и шаг-H в дюймах (1дюйм=2.54см) и кол-во лопастей-n и условно принято обозначать как DxHxn ---например 5х4x3!!! 

Равномерная крутка лопасти обеспечивает постоянный геометрический шаг винта для прямого набегающего потока! В первую очередь они делятся на так называемые тяговые и скоростные-----принято считать, что если шаг винта H меньше диаметра D или соотношение шага к диаметру меньше единицы коэффициент винта Кв=H/D, где ещё не начался полный срыв потока с лопастей из-за угла атаки менее 12 градусов, то это тяговый пропеллер с относительно большой стендовой удельной тягой!

для мультикоптеров Кв=0.25 или 1/4 называют условно четвертной-----

Кв=0.33 или 1/3 треугольный----

Кв=0.5 или 1/2 половинный----

и для самолетов Кв=0.62 или золотого сечения по тяге----

Кв=1 или 1/1 как квадратный ----

для медленных водоизмещающих судов гребные винты Кв=(0.9--1.1)-----

скоростные открытые винты с Кв=1.62(золотого сечения по скорости) для быстрого движения типа гонки и винты в трубе типа импеллеров Кв=(1.5--2) !

Авиамодельных винты условно принято называть коптерными для относительного шага (0.3--0.5) с вогнутовыпуклым профилем лопастей с кривизной (8--12)% и самолётными при H/D= (0.6--1.1) с плосковыпуклым профилем толщиной (10--16)%!

относительный шаг или коэф. винта---Кв=Н/D это самый важный безразмерный параметр всех типов крыльчаток

Соотношение геометрического шага Н к диаметру D воздушного винта определят пик эффективности в разных режимах полёта---

1)для висючек типа больших мультироторных платформ Н/D=0.24 получается максимальная удельная тяга для тяжелых аппаратов!

2)коптерный Н/D = 0.38 максимальный упор на стопе и при малой поступательной скорости хорош для дирижаблей, мото-парителей и аэрошютов , где нужно медленно, но уверено ползти в крутую горку!

3)пилотажный Н/D=0.62 для тренеров, пилотаг, конвертопланов и автожиров, где оптимальное соотношение тяги на стопе и средней скорости полёта при средней энерговооруженности ---максимум скороподъёмности и высший пилотаж при высоком коэф. мощности!

4)гоночный Н/D =1 или квадратный винт хорош для скоростного боевого пилотажа, гонки и высокого крейсера!!!

5)скоростной Н/D=1.62 для пиковых максимальных скоростей у гребных винтов и низкоскоростных импеллеров!

6)Н/D=2.62 уже для больших скоростей у вв на высоте и импеллеров средней скорости!

7)Н/D=4.24 для импеллеров околозвуковых скоростей!


Форма и удлинение лопастей авиамодельных винтов

Самый распространённый вид пропеллера в авиамоделизме ----это двухлопастный винт фиксированного шага. Основные формы задают дизайн, распределение тяги по радиусу, сопромат и технологию изготовления.

Удлинение лопасти Куд-----это соотношение ширины в сечении 0.75 радиуса к полной длине лопасти до оси вращения 

1) исторически эллипсоидная форма лопасти называется русским винтом при Куд=(5--6) обычно слоуфлаеры из термопластика,

2) прямоугольная при Куд=(7--8) обычно для двс из реактопластика с толстой комлей лопастей,

3) трапецевидная с сужением (2.5--3) и Куд=(9--10) типа диджиай стиль и т-моторс,

4) типа китового плавника сложной современной формы Куд=(6--8) типа граупнер и аэронавт стиль,

5) оригинальной гибридной формы с сужением (2--2.5) и Куд=(7--10) типа апс стиль,

6) рассеченный овал типа "палаш" с Куд=(8--9) скоростные высокооборотные деревянные или пластмассовые,

7) оригинальный высокоэффективный малошумный винт Книжникова ВВ сложной формы с удлинением лопастей (6--7) типа слоу-флаер.

Формывинтов.jpg

Кпд винта от габаритов

Идеальный винт при вращении в среде типа воздух не имеет профильное сопротивление лопастей, трения, срыва потока с лопастей и потерю мощности на закручивание потока !------смотри статью-ликбез "КПД винта"


КПД пропульсивной системы в полёте (внешний кпд) это соотношение поглощённой мощности планером к мех. мощности на валу! КПДвнеш = Fx Vпол /  M w


На практике начальный кпд или КПДво воздушных винтов в большой авиации 0.95 или 95% обусловлен огромными габаритами диаметром 5-6 метров, много лопастностью 4-8штук, узкими с большим удлинением лопастями и большим числом Рейнольдса более пяти миллионов, низким профильным сопротивлением, малой шероховатостью и низкой частотой вращения 660-780 об/мин и большим относительным шагом, как соотношение шага к диаметру 2.5-3 раза и в полёте имеет полный внешний кпд около 90% при горизонтальной скорости полёта 700-900 км в час!

В средней авиации и БПЛА типа "мегадрон" кпд в полёте около 85% при РЕ=3 500 000, так как меньше габариты диаметром 3-4 метра и больше частота вращения 900-1000 при скоростях 500-600 км в час!

в малой авиации динамический кпд=80% не более при оборотах 1500-1800, диаметр 2-2.5 метра при скорости 300-400 км в час!

у сла и "максидрон" реальный кпд=75% при 2000-3000 и диаметр 1.4-1.8м при 180-250 км в час !


на гигантских авиамоделях и "мидидрон" кпд=70% при д=65-100см (26-40дюйм) 4000-5000 при 120-160 км/час!

на больших авиамоделях кпд=65% при д=40-60см (16-24дюйм) ---- 6000-7000 при 85-110 км/ч!

на авиамоделях средних размеров и "минидрон" кпд=60% при д=25-38см (10-15дюйм)-----8000-9000 при 65-80 км/ч!

на малых авиамоделях аля паркфлаеры и "микродрон" кпд=55% при д=15-23см (6-9дюйм) ----10 000-12000 при 45-60 км/ч!


детские летающие игрушки кпд=50% при д=10-13см (4-5дюйм)----13 000-15 000 при 35-40 км/ч

комнатные авиамодели и импеллера кпд=40-45% при д=5-8см (2-3дюйм)----25 000-30 000

для судомоделей гребные винты имеют кпд=30-35% при д=2.5-4см (1-1.6дюйм)

Падение внешнего КПД винта при уменьшении диаметра объясняется увеличением частоты вращения для создания необходимой тяги и значит растут центробежные силы толкающие пограничный слой вдоль лопасти от центра к периферии---это вызывает повышение сил трения потока о поверхность пропеллера и потерянная мощность на паразитное закручивание потока!!!


при скорости потока от винта меньше 36 км в час или 10 м/с полет на моторе не выгоден из-за низкого кпд винта менее 40%, так как число РЕ для лопастей не более 40 000---- вязкое, липкое обтекание!

то есть летать на низком крейсере на моторе невыгодно,проще выключить вмг и перейти на планирование в динаме или парение в термиках

частота вращения винта ограничена окружной скоростью кончиков лопастей и не должна превышать скорость звука из-за волнового кризиса, но на практике не более 270 м/с для ла!


Относительное скольжение винта и угол атаки

Приведенный угол атаки лопасти условно считается на сечении 0.75 радиуса----но на самом деле угол атаки минимален на кончике и максимален в комле, но это компенсируется изменением формы профиля и ширины лопасти для более равномерного распределения силы тяги и момента аэродинамического сопротивления по длине лопасти!

Разница между геометрическим шагом Н и поступью h задаёт скольжение! Так как угол атаки лопасти к набегающему потоку в горизонтальном полёте зависит только от относительного скольжения Кскол=(Но-h)/Но=1-Купор, а само скольжение зависит от режима полёта или потребной тяги то получается, что для квадратного винта

При пикировании в 30гр винт полностью разгружен и скольжение равно нулю и угол атаки нулевой и нет тяги---вырождение тяги при полном газе

1) при пологом снижении в (5--10)гр скольжение минимально (0.05--0.07) и угол атаки всего (1--1.5)гр,

2) на максим скорости горизонтального полета скольжение уже 0.1 и угол атаки 2 градусов!

3) при полёте в пологую горку (20--30)гр возвышения или мягком вираже скольжение (0.2--0.25) и угол атаки (4--5)гр пол-тяги от стопа,

4) при полёте в (40--50) гр возвышения или среднем вираже скольжение (0.3--0.35) и угол атаки (6--7)гр,

5) при крутой горке в 60 гр или крутом вираже скольжение 0.4 и угол атаки 8 гр,

6) при вертикальном полёте вверх скольжение 0.45 и угол атаки 10 гр----пик тяги,

7) на стопе скольжение квадратного винта 0.55 максимально ----срыв потока и рабочий угол атаки максимален 13 градусов!

падает текущая сила тяги от винта в полёте на максимальной горизонтальной воздушной скорости до запирания силой общего аэродинамического сопротивления планера бпла и как следствие все самолётные винты сильно разгружают мотор на полном газу по моменту наведённого сопротивления при прямолинейном горизонтальном полёте ла в 1.1-1.7 раз относительно режима на стопе и соответственно пропорционально падает потребляемая мощность и ток для эму!

для поршневого ДВС механический момент силы сопротивления на валу наведённого тягой с учётом КПД двухлопастного винта  ----М(Нм)=0.8Fст Н/2ПИ !

Вв является адаптивным движителем в зоне рабочих углов атаки лопасти в набегающем потоке в диапазоне 1-12гр----то есть при выполнении силовых фигур типа вираж, петля, где образуется перегрузка или горка с повышением тяги, пропеллер сам нагружает электромотор мощностью с ростом от относительного скольжения и падения скорости полёта при полном газу! Это хорошо слышно по изменению частота вращения винта и тону воя от режима полета во время высшего пилотажа.


Режим полета и эффективность пропеллера

График зависимости по экспоненте тяги ВВ на стопе от изменяемого шага при диаметре D=20см и Кв=(0.1--1.6), частота вращения постоянна 10 000 об/мин----слева красным сила тяги, справа синим теоретическая скорость потока!

Хорошо видно перелом роста тяги при Кв=Н/D=12см/20см=0.6----это начало срыва потока с лопастей, начинает сильно расти момент сопротивления на валу!!!

Тяга ВИШ1.jpg

Из институтского курса лопаточных машин--- все типы крыльчаток осевых и центробежных это лишь разновидность винта----преобразователя мощности потока в механическую вращения при генерации, когда поступь больше шага и поток тормозится и наоборот при режиме движителя ----поступь меньше шага, а поток ускоряется! На винтах серединная часть ометаемой площади не работает на тягу и соотношение паразитной части может достигать до 10-15% от общей и зависит от формы лопастей и конструктива комли---получается дырка в блине ----- это также уменьшает тягу и кпд винта! Поэтому КПД преобразования не превышает 90% даже при больших размерах !

Так как тяга винта для самолётов не играет существенной роли от стопа до скорости сваливания, то шаг подбирается так, чтобы срыв потока на лопастях пропадал именно на границе сваливания ла, называется подхват----то есть на стопе мотор немного перегружен по моменту сопротивления при винте фиксированного шага (ВФШ), чем выше нагрузка на крыло тем больше скорость сваливания и крейсер!

И поэтому для каждого режима полета есть оптимальный относительный шаг, а также форма и профиль лопастей, когда внешняя эффективность винта максимальна

1) Пик тяги рассчитанный на скорость планирования с АКмах или Кск=(1.2--1.3) скорости сваливания даёт максимальную скороподъёмность типичное соотношение шага к диаметру Кв=H/D=(0.6--0.7) при КПДвнеш=60%--63% соответственно---режим боевого пилотажа с минимальными радиусами виража и петли

2) Высокий крейсер или Кск=(1.6---2.0) скорости сваливания дает пик кпд на винте с Кв=(0.8--0.9) при КПДвнеш=65%--67%---режим круиза для бпла

3) Пик скорости на гоночных ла или Кск=(3--4) и Кв=(1.0--1.2) при КПДвнеш=69%--71%--правда долго разбегаться будет при винте фиксированного шага---режим гонки или нужен дополнительный ускоритель в виде тягача, или резиновая катапульта, или пороховой двигатель, или сразу ВИШ !

4) Тяговые винты с Кв=(0.4--0.5) типа коптерный "слоуфлай" имеет смысл использовать лишь в случае пика тяги на стопе (3Д-пилотаж), когда приходиться вертикально стартовать с малых площадок и быстро набрать безопасную высоту---- правда эффективность этих винтов в горизонтальном полете очень низка при КПДвнеш=40%-50%---поэтому выгодней летать импульсами----короткий крутой набор высоты с углом 60-90 град потом долгое планирование с максимальным аэрокачеством--- процесс повторяется с высоты (50--60)м и до (300--500)м для мотопланеров  !

Оптимизация лопасти авиамодельного ВВ

1) по удлинению лопасти, чем выше частота вращения тем уже лопасть----ширина в середине b=(0.1трапеция--0.14плавник--0.2эллипс)(D Н)^0.5

2) по форме лопасти, чем саблеобразней передняя кромка тем тише шум от винта----радиус кривизны пер.кромки равен диаметру винта Rкромки=Dвинта

3) по профилю лопасти, чем выше несущие свойства крыла ла тем вогнутее профиль лопасти---- Сулоп=1.25Сумах

смотри статью "инженеринг винта-ликбез"


Практика замеров

Сила тяги вв прямо пропорциональна плотности воздуха ро, кол-во лопастей (n^0.67), профилю лопасти Сумах и обратно удлинению лопасти Куд---Кпроп

Тяга пропеллера на стопе на уровне моря-----Fст=0.9(D h fст)^2=Квв D Н (D fст)^2, где fст ---частота вращения винта на стопе в оборотах в секунду!!!

для двух-лопастного скоростного вв с тонким плосковыпуклым Сулоп=(1.0--1.1) и Кв=(0.9--1.1)-----Fгонка=0.18 D Н (D fст)^2 и h=0.45(D Н)^0.5 
с толстым плосковыпуклым профилем Сулоп=(1.2--1.3) для узких лопастей Куд=(10--9) и Кв=(0.7--0.8)----Fсамолёт=0.225 D Н (D fст)^2 и h=0.5(D Н)^0.5
со слабо вогнутовыпуклым  Сулоп=(1.4--1.5) для нормальных лопастей Куд=(8--7) и Кв=(0.5--0.6) -----Fпилотаж=0.27 D Н (D fст)^2 и h=0.55(D Н)^0.5
с сильно вогнутовыпуклым "слоуфлаер" Сулоп=(1.6--1.8) для широких лопастей Куд=(6--5) и Кв=(0.3--0.4)-----Fкоптер=0.32 D Н (D fст)^2 и h=0.6(D Н)^0.5

для трёхлопастного вв тяга в (0.5n)^0.67=1.5^0.67=1.3 раза больше------для четырёхлопастного вв тяга в 2^0.67=1.6 раза больше, чем у двухлопастного!!!

Все производители моторов рекомендуют диаметр и шаг допустимых винтов, тогда достаточно замерить тягу безменом и частоту вращения винта оптическим тахометром прямо на модели на стопе-----например винт 10х5 или D=254мм и H=127мм! Проблема в том, что разные производители пропеллеров указывают разный параметр шага винта (второе значения в дюймах, первое это диаметр----некоторые пишут максимальный шаг нулевой тяги-Но=1.25Н, другие геометрический шаг-Н, третьи поступь винта-h на стопе! Поэтому только практические замеры тяги и оборотов на стопе дадут истинную картину хар-ки винта!!!

1) К1 поступь винта на стопе у моря равна соотношению квадратного корня из 1.1 силы тяги к произведению диаметра на частоту h=(1.1Fст)^0.5/(Dfст) характеристика №1---- например (1.1х5.3н)^0.5/( 0.254м х 100гц)=2.41/25.4=0.0952м=95мм -----осевая скорость потока в плоскости винта на стопе это произведение поступи на частоту Vв=h fст=0.0952м х 100гц=9.52м/с

2) К2 аэродинамическая тяжесть ВВ по тяге это соотношение тяги к квадрату частоты Fст/f^2 есть х-ка №2 по тяге для винта постоянного шага Например при тяге в 530 г силы делить (100 гц)^2 получаем 0.053 г/гц2 или 0.00053н/гц2 --- потом просто пересчитывается тягу на другую частоту вращения!красная

3) К3 аэродинамическая тяжесть ВВ по мощности это соотношение мощности потока на стопе к кубу частоты вращения Pст/f^3---это х-ка №3 винта по мощности потока можно рассчитать как произведение х-ки№2 тяги на поступь винта на стопе ----самая главная характеристика винта!!! например 0.00053н/гц2 х 0.0952 м =0.0000504дж/гц2, тогда Рпот=0.0000504дж/гц2 х (100гц)^3=50.4вт! Тогда механическая мощность на валу Рмех=Рпот/КПДвнут=50.4/0.85=59вт!!!синяя

Тяга и моща вв.jpg

4) аэродинамическое качество винта ---- это соотношение длины окружности диаметра винта к шагу АКВ =3.14 х D / H ----например 3.14 х 0.254 м / 0.1м=8 единиц, тогда окружная скорость кончиков лопастей будет в в 8 больше осевой скорости потока в полёте, то есть 8х9.5м/с=76м/с меньше 270 м/с!

5) число Рейнольдса для лопасти должно превышать 60 000----Re=162bDf , где b-ширина лопасти на 0.75 радиуса в мм, D-диаметр винта в м, f-частота вращения в обор/сек например при ширине лопасти 17мм и диаметр 230мм и частоте 6 000 об/мин или 100 гц получаем 162х17х0.23х100=61 667!!!


Потребляемая электромощность ВМГ на стопе ( Ватт) приближенно равна произведению силы тяги на стопе (Ньютон) на теоретическую скорость потока от винта (метры/сек) или (геометрический шаг(метр) х частоту вращения под нагрузкой (обор/сек=Герц)!

Pэл=Fст Vтеор=Fст Н fст=Uакку Iст-----это самая главная формула для электро-авиамоделей самолётов !

например Рэл=5.3Н х 0.127м х 100Гц=5.3Н х 12.7м/с=67.2вт=6А х 11.2В

на практике зная четыре переменных всегда можно найти пятую неизвестную с точностью + -10%---например

1) тяга Fст=(Uакку Iст)/(Н fнаг)=(12В х 10А)/ (0.12м х 200гц)=120вт/24м/с=5Н=500г силы

2) сила тока Iст= (Fст Н fнаг)/Uакку=(10Н х 0.1м х 120Гц)/15В=120вт/15В=8А

3) частота fнаг=(Uакку Iст)/(FН)=(24В х 15А)/(12Н х 0.15м)=360вт/1.8Нм=200Гц

4) шаг Н=(UаккуIпотр)/(fнагF)= (50В х 100А)/(125Гц х 160Н)=5000вт/20000ГцН=0.25м

более подробно смотри статью "Предел э-ЭМУ-ликбез"


Промышленные винты

Цены на пропеллеры в магазине одного типоразмера могут различаться в 4-5 раз------объясняется это в первую очередь брендом, материалом и качеством исполнения! Самое главное это симметричность геометрии лопастей для динамической балансировки и моменты инерции для статической балансировки-----обычно дорогие изначально сбалансированы, но лучше сразу в магазине проверить магнитным балансиром или хотя бы на отвертке----если дисбаланс большой, то лучше не покупать ! Жесткость лопастей на кручение должны соответствовать частоте вращения------например для медленных слоуфлаеров небольшая эластичность допускается, а для скоростных это неприемлемо может зафлатерить-----при вибрациях разрушается пограничный слой на профиле и правильное обтекание лопасти,что приводит к резкому падению тяги и кпд вмг в целом! В профессиональной авиации обычно используются винты из легких металлических сплавов или угле-стекло-композитов---- в хобби широко распространены монолитные деревянные винты из твёрдых сортов и из термопластиков с прочными армирующеми нитями ----в авиамоделизме металлические пропеллеры строго запрещены!


Складные винты

Для бпла типа мотопланер актуально применение в режиме планирования в термичке винтов со складывающимися по потоку лопастями состоящего из хаба, кока и лопастей!

Главное обеспечить приемлемое охлаждение бк электромотора типа аутрайнер позади затеняющего кока в моторном режиме набора высоты , для этого в торце площадки хаба просверлены вентиляционные отверстия ,чтобы поток лизал не только вращающийся стакан с магнитами, но и затекал в передний торец мотора для охлаждения обмоток статора, очень важно в применении летом в жару!

Самым слабым звеном складных лопастей является комля с вращающейся осью---так как центробежные силы приходят на очень малую площадь контакта, то ни в коем случае нельзя превышать предельную частоту вращения винта иначе опасный отстрел лопасти и страшное биение вмг !

Центробежная сила на разрыв ----Fцб(Н)=1.3 mлоп(кг) Rцм(м) w^2, где круговая частота w(рад/с)=2ПИ f(Гц), и радиус до центра масс одной лопасти Rцм(м)

например складной винт 7х5 имеет лопасть массой в 4г=0.004кг и цм лопасти от оси вращения вала 4см=0.04м,тогда Fцб(Н)=1.3 х 0.004кг х (6.28 х 200 об/с)^2 х 0.04м=0.00016кгм х (1256 рад/с)^2= 0.00016 х 1 577 536=330Н=33кгс---- для современных пластмасс при модуле разрушения на разрыв 10кгс/мм2 и запасе прочности 1.62 получаем не менее 5мм2 сечения комли лопасти в узле складывания!!!

Так если на стенде на полном газу частота вращения не превышает предел, то при пикировании на полном газу винт облегчается и мотор может повысить обороты в 1.2 раза от стопа и центробежная сила на разрыв увеличится в 1.44 раза и приведёт к разрушению ступицы или комли лопасти!!!

например промышленные хабы и лопасти отлитые из термопластика----

1) винт 12х9 диаметром 305мм и шагом 230мм имеет гарантированный предел в 6 000 оборотов в минуту при тяге на стопе на уровне моря 15Н=1.5кгс

2) винт 11х8 диаметром 280мм и шагом 205мм имеет предел ----7 000 об/мин при тяге на стопе 13Н=1.3кгс

3) 10х7 д255мм ш180мм ---- 8 000 и 11н=1.1кгс

4) 9х6.3 д230мм ш160мм ----9 000 и 10н

5) 8х6 д200мм ш150мм ----10 000----9н

6) 7.5х5.5 д190мм ш140мм ----11 000----8н

7) 7х5 д180мм ш130мм ----12 000----7н

8) 6.8х4.8 д170мм ш120мм ----13 000----6н

9) 6.3х4.4 д160мм ш110мм ----14 000---5.5н

10) 6х4 д150мм ш100мм ----15 000---5н

Складной.jpg

Физический анализ упругости винтов

Есть несколько граничных частот работы винта!

1) поперечная резонансовая частота колебании лопасти характеризуется тарахтением, как звук у двс----это срыв потока на кончиках лопастей !

2) крутильная резонансовая частота отвечает за флаттер лопастей характеризуется воем!

3) частота вращения определяется прочностью комли лопасти на разрыв от центробежных сил!

Так как добротность поперечного резонанса не высока--больше похожа на холмик в небольшом диапазоне частот --она не опасна! А вот крутильные или флаттер может привести к разрушению при затягивании процесса ---обычно производители самолетных винтов ведут расчет в первую очередь прочности на разрыв от центробежных сил и автоматом получают высокую жесткость -а значит высокую поперечную и крутильную частоты резонанса заведомо выше рабочего диапазона! Упругость можно использовать, как режим адаптации к косому потоку, так как начинающиеся крутильные автоколебания будут помогать подкручиваться лопастям в оптимальные углы атаки! У лопастей авиамодельного винта центробежная сила на разрыв тела в комле лопасти обычно 40-50 раз больше силы тяги -----поэтому корневища лопасти делают толстым монолитом или мясистым!

более подробно смотри статью "механические резонансы-ликбез"


Воздушные импеллеры

импеллер или многолопастный винт с малым диаметром и относительно большим шагом в профилированной трубе ---это преобразователь механической мощности вращения в кинетическую мощность потока с высокой выходной скоростью и относительно малой тягой

1) типичный относительный шаг многолопастного винта 3-4 диаметра в больших турбовентиляторных двигателях и (1.5--2) у авиамодельных импеллерах-----чем больше относительный шаг, тем больше кол-во лопастей по тождеству n=(3--5)(H/D)![3]

2) желательно чтобы кол-во лопастей в крыльчатке было больше и не кратно спрямляющим лопаткам ---например 4 лопасти и 3 лопатки или 6 лопастей и 5 лопаток----это связанно с частотой и амплитудой паразитной пульсацией локальных скачков давления между лопастью и лопаткой---чем тише и выше по тону звук, тем выше кпд импеллера !

3) для золотого импеллера обычно длина входной горловины равняется одному радиусу крыльчатки, длина спрямляющего аппарата один радиус и длина сопла 1.25 радиусам ---итого общая длина конструкции равна 1.62 диаметрам крыльчатки! есть эмпирика ----длина фена равна шагу крыльчатки L= H, чем длиннее труба, тем больше потери потока на трение о стенки!

4) соотношение входной площади губы к площади среза сопла не более 2 единиц или коэффициент сужения потока (1.4--2)-----а диаметр входного патрубка больше диаметра крыльчатки в (1.1--1.2) раза!

5) соотношение входного сечения импеллера к полному миделю самолёта (0.2--0.25) для реактивных полукопий!

читай статью "история импеллера"-----

Особенности применения импеллеров для реалистического полёта----

1)тяговооруженность на старте при полном газу не более 0.7

2)сумма площадей воздуховода (входных отверстий и щелей) не менее двух площадей сопла

3)профиль лопастей крыльчатки желательно вогнуто выпуклый

4)масса липо акку в граммах эмпирически равна мощности потребления в ваттах на стопе

5)размашистый пилотаж----большие радиусы поворотов, петли с пикирования, угол подъёма в горку не более 30 градусов

6)диаметр крыльчатки ----это половина САХ крыла

7)коэф. перекрытия лопастей не менее 0.6

управляемый вектор тяги---[4]

Импеллер.jpg


Тяга винта в динамике при тяговооруженности на стопе Тст=1  эмпирически-----  Fпол=0.5Fст(H/D)^0.5  

На практике тяга винта в горизонтальном полёте на полном газу меньше в (2--3) раза от тяги на стопе----

1) падение тяги примерно в два раза у скоростных винтов (квадратные)для гонок и у импеллеров на максимальной горизонтальной скорости

2 )падение в два с половиной раза у пилотажных самолётных винтов с относительным шагом Ш/Д=(0.6--0.8)

3) падение в три раз у тяговых и коптерных винтов с Ш/Д=(0.4--0.5)

Личные инструменты
Пространства имён
Варианты
Действия
Навигация
Инструменты
Группа ВКонтакте