Инженеринг винта-ликбез
(не показаны 17 промежуточных версий 11 участников) | |||
Строка 2: | Строка 2: | ||
Аэродинамический метод расчёта -----автор Книжников ВВ (гений винта!) | Аэродинамический метод расчёта -----автор Книжников ВВ (гений винта!) | ||
− | Главные хар-ки описывающая возможности открытых тяговых многолопастных винтов на статике | + | Главные хар-ки описывающая возможности открытых тяговых многолопастных винтов на статике[https://www.youtube.com/watch?v=zkionSO2AAo][https://www.youtube.com/watch?v=2JK1sn4OTlU] |
Сул-профиль , D-диаметр, H-шаг, Sл-рабочая площадь одной лопасти на длине 0.3--1 радиуса самолётного винта, 0.4--1 радиуса для "слоуфлаера", n-кол-во лопастей | Сул-профиль , D-диаметр, H-шаг, Sл-рабочая площадь одной лопасти на длине 0.3--1 радиуса самолётного винта, 0.4--1 радиуса для "слоуфлаера", n-кол-во лопастей | ||
Строка 18: | Строка 18: | ||
Тождество относительного шага прямо пропорционально углу атаки на стопе и коэф.подъёмной силы! | Тождество относительного шага прямо пропорционально углу атаки на стопе и коэф.подъёмной силы! | ||
По аэродинамической теории хорошо считаются тяговые винты с относительным малым шагом Кв=Н/D меньше 1! | По аэродинамической теории хорошо считаются тяговые винты с относительным малым шагом Кв=Н/D меньше 1! | ||
− | Если принять, что текущий Су эквивалентен углу атаки лопасти на стопе, а угол от относительного шага Кв,то тогда для винта Су= | + | Если принять, что текущий Су эквивалентен углу атаки лопасти на стопе, а угол от относительного шага Кв,то тогда для винта Су=Сул Кв=Сул Н/D |
− | Одна лопасть винта рассматривается как набор элементов крыла с рабочей площадью Sл в набегающем окружном потоке с различными углами атаки по формуле подъёмной силы из аэродинамики F=0.5pо Cy S Vокр ^2 =0.5pо Сул | + | Одна лопасть винта рассматривается как набор элементов крыла с рабочей площадью Sл в набегающем окружном потоке с различными углами атаки по формуле подъёмной силы из аэродинамики F=0.5pо Cy S Vокр ^2 =0.5pо Сул Кв Sл (Пи D f)^2 К------ |
F=0.5pо (3.14)^2 Сул H Sл D f^2 К=(4.9pо) Cyл D H Sл f^2 (Kу n^2/3) , | F=0.5pо (3.14)^2 Сул H Sл D f^2 К=(4.9pо) Cyл D H Sл f^2 (Kу n^2/3) , | ||
Строка 26: | Строка 26: | ||
где Ку = Кинт Ккрут Кзап = 0.7 х 0.95 х 0.9 = 0.6 ------------для самолётного винта! | где Ку = Кинт Ккрут Кзап = 0.7 х 0.95 х 0.9 = 0.6 ------------для самолётного винта! | ||
− | 1) Кинт средний 0.7--0.8 интегральный коэффициент центра распределения силы тяги по лопасти от радиуса ----центр давления зависит от формы лопасти -----для эллипса в 0.75R, трапеции 0.65R, плавника 0.7R, | + | 1) Кинт средний (0.7--0.8) интегральный коэффициент центра распределения силы тяги по лопасти от радиуса ----центр давления зависит от формы лопасти -----для эллипса в 0.75R, трапеции 0.65R, плавника 0.7R, |
− | 2) Ккрут средний коэф.крутки 0.8--0.98 лопастей или квадрат косинуса угла установки лопасти на сечении 0.7-0. | + | 2) Ккрут средний коэф.крутки (0.8--0.98) лопастей или квадрат косинуса угла установки лопасти на сечении (0.7--0.8)R, |
зависит от относительного шага----например при H/D=1.6---0.8, H/D=1---0.9, при H/D=0.8---0.95, H/D=0.6---0.97, H/D=0.4---0.98 | зависит от относительного шага----например при H/D=1.6---0.8, H/D=1---0.9, при H/D=0.8---0.95, H/D=0.6---0.97, H/D=0.4---0.98 | ||
− | 3) Кзат средний коэф.затенения ометаемой площади круга винтом учитывающий не работающий части потока комли лопасти и кока 0.8--0.9 | + | 3) Кзат=(0.1--0.2) средний коэф.затенения ометаемой площади круга винтом учитывающий не работающий части потока комли лопасти и кока Кзап=1-Кзат=(0.8--0.9) |
4) коэффициент кол-ва лопастей (n)^0.67 | 4) коэффициент кол-ва лопастей (n)^0.67 | ||
тяга ВВ на стопе (Н)----Fст = (4.9ро) (ГТВ) f^2, где геометрическая тяжесть винта (ГТВ)=0.6 Sл Сул D H n^0.67, по методу Книжникова, | тяга ВВ на стопе (Н)----Fст = (4.9ро) (ГТВ) f^2, где геометрическая тяжесть винта (ГТВ)=0.6 Sл Сул D H n^0.67, по методу Книжникова, | ||
− | + | ||
+ | кстати размерность длины м---площади м2---объёма м3---ГТВ м4 указывает, что любое вращение вызывает появление новой четвертого измерения! | ||
динамическая тяжесть это произведение торсионной плотности среды на геометрическую тяжесть----поэтому конкретный винт в воздухе крутить легко,а в воде в 800 раз тяжелее! | динамическая тяжесть это произведение торсионной плотности среды на геометрическую тяжесть----поэтому конкретный винт в воздухе крутить легко,а в воде в 800 раз тяжелее! | ||
Строка 44: | Строка 45: | ||
режим винта статический или на стопе | режим винта статический или на стопе | ||
− | истинная поступь для многолопастного винта на стопе (м)--- h= | + | истинная поступь для многолопастного винта на стопе (м)--- h=2(Sл n^0.67 Cyл Н/D)^0.5 |
осевая скорость потока в сечении плоскости винта (м/с)---- Vo=h f | осевая скорость потока в сечении плоскости винта (м/с)---- Vo=h f | ||
Строка 63: | Строка 64: | ||
для большинства авиамодельных двухлопастных винтов с плосковыпуклым профилем и трапецевидной формой геометрическая тяжесть упрощенно | для большинства авиамодельных двухлопастных винтов с плосковыпуклым профилем и трапецевидной формой геометрическая тяжесть упрощенно | ||
− | ГТВдвухлоп(м4) = 1. | + | ГТВдвухлоп(м4) = 1.25 Sл D H |
расчёт рабочей площади одной лопасти винта удобно как Sл=Sомет х (1/22 для слоуфлаер, 1/26 для пилотажных и 1/30 для скоростных винтов) или | расчёт рабочей площади одной лопасти винта удобно как Sл=Sомет х (1/22 для слоуфлаер, 1/26 для пилотажных и 1/30 для скоростных винтов) или | ||
Строка 74: | Строка 75: | ||
Подбор габаритов винта | Подбор габаритов винта | ||
− | Оптимизация винта для ла является важной задачей для авиаконструктора----правильно подобрать винтомоторную группу или вмг под самолёт , но не всегда под наличием нужный двигатель при условии что винт можно сделать самому или заказать недорого на стороне . Расчёт ометаемой площади винта под оптимальный крейсер Vкр=1.6Vсвал для полноразмерной авиации, n-кол-во параллельных винтов! Fтек=0.5pо Cyл Sомет (Vпот^2-Vпол^2)=0 | + | Оптимизация винта для ла является важной задачей для авиаконструктора----правильно подобрать винтомоторную группу или вмг под самолёт , но не всегда под наличием нужный двигатель при условии что винт можно сделать самому или заказать недорого на стороне . Расчёт ометаемой площади винта под оптимальный крейсер Vкр=1.6Vсвал для полноразмерной авиации, n-кол-во параллельных винтов! тяга в полёте Fтек=0.5pо Cyл Sомет (Vпот^2-Vпол^2)-------скоростной напор (1.225Vпол)^2-Vпол^2=0.5Vпол^2---------------сила аэродинамического сопротивления Fсопр=0.5pо Vпол^2 Сх Sмид |
аэродинамическая рабочая площадь "волшебного круга" ВВ в динамике-------- Sв = 0.5 Кзат Ккрут Сул Sомет = 0.5х0.9х0.95х0.78 Сул D^2 = 0.4 D^2 | аэродинамическая рабочая площадь "волшебного круга" ВВ в динамике-------- Sв = 0.5 Кзат Ккрут Сул Sомет = 0.5х0.9х0.95х0.78 Сул D^2 = 0.4 D^2 | ||
Строка 91: | Строка 92: | ||
практические расчёты промышленных винтов на стопе смотри статью "воздушные винты" | практические расчёты промышленных винтов на стопе смотри статью "воздушные винты" | ||
− | для проверки инженеринга применено математическое тождество реактивной теории винтов в статике----Fст = Кзат Sомет ро | + | для проверки инженеринга применено математическое тождество реактивной теории винтов в статике----Fст = Кзат Sомет ро Vв^2 = 0.9 D^2 (h f)^2 |
− | уравнение №1 скоростной хар-ки----осевая скорость потока в плоскости винта | + | уравнение №1 скоростной хар-ки----осевая скорость потока в плоскости винта Vв = h f |
уравнение №2 тяговой хар-ки----сила тяги винта Fст = 6 (ГТВ) f^2 | уравнение №2 тяговой хар-ки----сила тяги винта Fст = 6 (ГТВ) f^2 | ||
Строка 107: | Строка 108: | ||
тяга двухлопастного пропеллера на стопе для ДВС на уровне моря---- Fст=po Sомет Vв^2= 0.22 D^3 Н fст^2 | тяга двухлопастного пропеллера на стопе для ДВС на уровне моря---- Fст=po Sомет Vв^2= 0.22 D^3 Н fст^2 | ||
− | для э-ВМГ модельной размерности на полном газу частота вращения----fст= | + | для э-ВМГ модельной размерности на полном газу частота вращения----fст=0.73 Кхх Uакку, где оборотистость эд Кхх(Гц/В)=Кv(об/мин/В)/60 |
------------------------------------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------ | ||
Строка 113: | Строка 114: | ||
Философия винта в авиации это произведение (Сул D Н) и относительный шаг как соотношение Кв=Н/D--------например аэрокачество винта АКВ=Пи/Кв | Философия винта в авиации это произведение (Сул D Н) и относительный шаг как соотношение Кв=Н/D--------например аэрокачество винта АКВ=Пи/Кв | ||
− | поступь пропеллера на стопе --------h=0.45(Сул D Н)^0.5-----------------h=0.45(Сул Кв)^0.5 | + | поступь пропеллера на стопе --------h=0.45(Сул D Н)^0.5-----------------h=0.45 D(Сул Кв)^0.5 -------------скорость планирования Vплан = Vв = h fст |
− | шаг нулевой тяги в полёте-----------Но=(Сул | + | шаг нулевой тяги в полёте-----------Но=Н(Сул)^0.5--------------------Но=D Кв(Сул )^0.5 ----------------скорость пикирования Vпик=Vмах= Но fхх |
тяга на стопе-------------------Fст=0.18 Сул D Н (D fст)^2--------------Fст=0.18 Сул Кв (D^2 fст)^2------скорость горизонтальная Vгор=0.9 Н fст | тяга на стопе-------------------Fст=0.18 Сул D Н (D fст)^2--------------Fст=0.18 Сул Кв (D^2 fст)^2------скорость горизонтальная Vгор=0.9 Н fст | ||
− | подбор габаритов ВВ-------------Сул D Н= | + | подбор габаритов ВВ-------------Сул D Н=Су(1.1САХ)(0.9САХ)=Сумах САХ^2--------------------------------- площадь крыла самолёта Sкр=Куд D Н |
+ | |||
+ | ------------------------------------------------------------------------------------------------------------------------------------------------------ | ||
+ | |||
+ | минимальные требование к полёту авиамодели самолёта------- | ||
+ | |||
+ | скорость потока через плоскость винта на стопе не менее скорости сваливания Vo = h fст =(2mg/ро Сумах Sкр)^0.5 | ||
+ | |||
+ | тяга в полёте не менее Fмин=mg/АКмах-----тяговооруженность для самостоятельного взлёта с ВПП не менее Тст=0.4----бросок с руки не менее Тст=0.3 | ||
+ | |||
+ | минимальный механический момент на валу для пилотажного винта с Кв=0.62----- М=КПДв Fст Н/2Пи=0.13Fст Н | ||
+ | |||
+ | минимальная удельная потребляемая электро мощность ВМГ в горизонтальном полёте не менее Рэл/m=40вт/кг-------------с набором высоты Рэл/m=100вт/кг |
Текущая версия на 10:27, 10 ноября 2024
Аэродинамический метод расчёта -----автор Книжников ВВ (гений винта!)
Главные хар-ки описывающая возможности открытых тяговых многолопастных винтов на статике[1][2]
Сул-профиль , D-диаметр, H-шаг, Sл-рабочая площадь одной лопасти на длине 0.3--1 радиуса самолётного винта, 0.4--1 радиуса для "слоуфлаера", n-кол-во лопастей
для винтов авиамодельной размерности----первые значения для толщины профиля лопасти 9--11%, вторые для 14--16%
1) с сильно вогнуто-выпуклым профилем Сул=1.6--1.8 для коптера и парителя
2) со слабо вогнуто-выпуклым профилем Сул=1.4--1.5 для грузовика
3) с плосковыпуклым профилем Сул=1.2--1.3 для пилотажки и бойцовки
4) с несимметричным двояковыпуклым Сул=1.0--1.1 для гонки и рекордно-скоростных
Тождество относительного шага прямо пропорционально углу атаки на стопе и коэф.подъёмной силы! По аэродинамической теории хорошо считаются тяговые винты с относительным малым шагом Кв=Н/D меньше 1! Если принять, что текущий Су эквивалентен углу атаки лопасти на стопе, а угол от относительного шага Кв,то тогда для винта Су=Сул Кв=Сул Н/D
Одна лопасть винта рассматривается как набор элементов крыла с рабочей площадью Sл в набегающем окружном потоке с различными углами атаки по формуле подъёмной силы из аэродинамики F=0.5pо Cy S Vокр ^2 =0.5pо Сул Кв Sл (Пи D f)^2 К------
F=0.5pо (3.14)^2 Сул H Sл D f^2 К=(4.9pо) Cyл D H Sл f^2 (Kу n^2/3) ,
где Ку = Кинт Ккрут Кзап = 0.7 х 0.95 х 0.9 = 0.6 ------------для самолётного винта!
1) Кинт средний (0.7--0.8) интегральный коэффициент центра распределения силы тяги по лопасти от радиуса ----центр давления зависит от формы лопасти -----для эллипса в 0.75R, трапеции 0.65R, плавника 0.7R,
2) Ккрут средний коэф.крутки (0.8--0.98) лопастей или квадрат косинуса угла установки лопасти на сечении (0.7--0.8)R, зависит от относительного шага----например при H/D=1.6---0.8, H/D=1---0.9, при H/D=0.8---0.95, H/D=0.6---0.97, H/D=0.4---0.98
3) Кзат=(0.1--0.2) средний коэф.затенения ометаемой площади круга винтом учитывающий не работающий части потока комли лопасти и кока Кзап=1-Кзат=(0.8--0.9)
4) коэффициент кол-ва лопастей (n)^0.67
тяга ВВ на стопе (Н)----Fст = (4.9ро) (ГТВ) f^2, где геометрическая тяжесть винта (ГТВ)=0.6 Sл Сул D H n^0.67, по методу Книжникова,
кстати размерность длины м---площади м2---объёма м3---ГТВ м4 указывает, что любое вращение вызывает появление новой четвертого измерения!
динамическая тяжесть это произведение торсионной плотности среды на геометрическую тяжесть----поэтому конкретный винт в воздухе крутить легко,а в воде в 800 раз тяжелее!
упор ГВ на стопе для воды (Н)----Fст = 4900 (ГТВ) f^2
режим винта статический или на стопе
истинная поступь для многолопастного винта на стопе (м)--- h=2(Sл n^0.67 Cyл Н/D)^0.5 осевая скорость потока в сечении плоскости винта (м/с)---- Vo=h f
мощность потока на стопе (вт)----- Pпот=Fст Vo
кпд идеальный винта на стопе (%)---- КПДвнут=100% (2 h /( H + h))
так как эквивалентно КПДв=0.5(Сумах n/Кв)^0.25-----то видно очень важное свойство удержание высокой эффективности на стопе для скоростных винтов с Кв=Н/D больше единицы типа импеллеров, то это применение много-лопастности (четыре и более штук) и соответственно вогнуто выпуклого профиля!!!
для "золотого" импеллера с Кгуб=1.41, Кв=1.6 и Cyл=1.25------ ГТимп=0.42 Кгуб D Н Sл Cyл n^0.67 =1.2 D^2 Sл n^0.67
для двс расчет момента сопротивления на валу удобно проверить следующим способом---M=Fh/(6.28 КПДвнут) момент сопротивления это тяга на стопе в ньютонах умножить на поступь в метрах и делить на два пи и на кпд по тяге идеального винта
для большинства авиамодельных двухлопастных винтов с плосковыпуклым профилем и трапецевидной формой геометрическая тяжесть упрощенно
ГТВдвухлоп(м4) = 1.25 Sл D H
расчёт рабочей площади одной лопасти винта удобно как Sл=Sомет х (1/22 для слоуфлаер, 1/26 для пилотажных и 1/30 для скоростных винтов) или
Sл=0.15 Сумах Sкр / АКмах n Сул
Подбор габаритов винта
Оптимизация винта для ла является важной задачей для авиаконструктора----правильно подобрать винтомоторную группу или вмг под самолёт , но не всегда под наличием нужный двигатель при условии что винт можно сделать самому или заказать недорого на стороне . Расчёт ометаемой площади винта под оптимальный крейсер Vкр=1.6Vсвал для полноразмерной авиации, n-кол-во параллельных винтов! тяга в полёте Fтек=0.5pо Cyл Sомет (Vпот^2-Vпол^2)-------скоростной напор (1.225Vпол)^2-Vпол^2=0.5Vпол^2---------------сила аэродинамического сопротивления Fсопр=0.5pо Vпол^2 Сх Sмид
аэродинамическая рабочая площадь "волшебного круга" ВВ в динамике-------- Sв = 0.5 Кзат Ккрут Сул Sомет = 0.5х0.9х0.95х0.78 Сул D^2 = 0.4 D^2 эффективный аэродинамический мидель------Сх Sмид = Су Sкр/АКтек = Суопт Sкр (0.8Кск)/АКмах = 0.8х0.62 Сумах Sкр 1.6/АКмах = 0.8 Сумах Sкр/АКмах
D^2 = 2.4 Сумах Sкр / АКмах Сул
оптимальный диаметр ВВ------------------D=(1.3тол--1.4тян)(Сумах Sкр/АКмах)^0.5----------------------------двухмоторник D=САХ(Сумах/Как)^0.5
оптимальный геометрический шаг ВВ-------Н=Кв D=(0.6пил--0.8сам--1.0гон)D-----------------------------------двухмоторник Н=0.8D=0.9САХ
практические расчёты промышленных винтов на стопе смотри статью "воздушные винты"
для проверки инженеринга применено математическое тождество реактивной теории винтов в статике----Fст = Кзат Sомет ро Vв^2 = 0.9 D^2 (h f)^2
уравнение №1 скоростной хар-ки----осевая скорость потока в плоскости винта Vв = h f
уравнение №2 тяговой хар-ки----сила тяги винта Fст = 6 (ГТВ) f^2
уравнение №3 мощностной хар-ки--- мощность потока Pст = 6 (ГТВ) h f^3
тяга винта на полном газу в режиме горизонтального полёта примерно (1/2--1/3) от стенда
Но в практике обычно для проверке данных используют короткие и наглядные формулы основных законов физики !
тяга двухлопастного пропеллера на стопе для ДВС на уровне моря---- Fст=po Sомет Vв^2= 0.22 D^3 Н fст^2
для э-ВМГ модельной размерности на полном газу частота вращения----fст=0.73 Кхх Uакку, где оборотистость эд Кхх(Гц/В)=Кv(об/мин/В)/60
Философия винта в авиации это произведение (Сул D Н) и относительный шаг как соотношение Кв=Н/D--------например аэрокачество винта АКВ=Пи/Кв
поступь пропеллера на стопе --------h=0.45(Сул D Н)^0.5-----------------h=0.45 D(Сул Кв)^0.5 -------------скорость планирования Vплан = Vв = h fст
шаг нулевой тяги в полёте-----------Но=Н(Сул)^0.5--------------------Но=D Кв(Сул )^0.5 ----------------скорость пикирования Vпик=Vмах= Но fхх
тяга на стопе-------------------Fст=0.18 Сул D Н (D fст)^2--------------Fст=0.18 Сул Кв (D^2 fст)^2------скорость горизонтальная Vгор=0.9 Н fст
подбор габаритов ВВ-------------Сул D Н=Су(1.1САХ)(0.9САХ)=Сумах САХ^2--------------------------------- площадь крыла самолёта Sкр=Куд D Н
минимальные требование к полёту авиамодели самолёта-------
скорость потока через плоскость винта на стопе не менее скорости сваливания Vo = h fст =(2mg/ро Сумах Sкр)^0.5
тяга в полёте не менее Fмин=mg/АКмах-----тяговооруженность для самостоятельного взлёта с ВПП не менее Тст=0.4----бросок с руки не менее Тст=0.3
минимальный механический момент на валу для пилотажного винта с Кв=0.62----- М=КПДв Fст Н/2Пи=0.13Fст Н
минимальная удельная потребляемая электро мощность ВМГ в горизонтальном полёте не менее Рэл/m=40вт/кг-------------с набором высоты Рэл/m=100вт/кг