Воздушные винты-ликбез

(Различия между версиями)
Перейти к: навигация, поиск
Строка 134: Строка 134:
 
оптимальный диаметр двухлопастного пропеллера для крылатого ла на двух скоростях планирования или 2.5 скоростей сваливания----
 
оптимальный диаметр двухлопастного пропеллера для крылатого ла на двух скоростях планирования или 2.5 скоростей сваливания----
  
Dдвухлоп=CAXкр (Cyмах)0.5  
+
Dдвухлоп=CAXкр (Cyмах)0.5 или Sомет= Cyмах CAX2
  
  

Версия 18:08, 5 апреля 2021


Так как до сих пор нет единой теории винта и крыла ----а лишь физические модели основанные на разных законах физики-----например реактивная на третьем законе Ньютона, или закон Бернулли из термодинамики, или аэродинамическая на теории Жуковского, получается что то приближенное к практике с поправочными коэффициентами . Каждая фирма производитель использует свою математическую модель проектирования лопастей, то есть профиля, форма, крутка и в зависимости от условий работы винты имеют богатое разнообразие для различных классов летательных и водоплавающих аппаратов!

воздушный винт открытого типа называется пропеллер

относительный шаг винта Ш/Д Равномерная крутка лопасти обеспечивает постоянный геометрический шаг винта для прямого набегающего потока! В первую очередь они делятся на так называемые тяговые и скоростные-----принято считать, что если шаг винта H меньше диаметра D или соотношение шага к диаметру меньше единицы К=H/D, где ещё не начался полный срыв потока с лопастей из-за угла атаки менее 12 градусов, то это тяговый пропеллер с относительно большой стендовой удельной тягой!

для мультикоптеров К=0.25 или 1/4 называют условно четвертной-----

К=0.33 или 1/3 треугольный----

К=0.5 или 1/2 половинный----

и для самолетов К=0.62 или золототого сечения----

К=1 или 1/1 как квадратный ----

для медленных водоотталкивающих судов гребные винты К=0.9-1.1-----

скоростные открытые винты с К=1.2-1.6 для быстрого движения типа гонки и винты в трубе типа импеллеров К=1.5-2 !

Авиамодельных винты условно принято  называть коптерными для относительного шага 0.3-0.5 с вогнутовыпуклым профилем лопастей  с кривизной  5-8% и самолётными при H/D= 0.6-1.1с плосковыпуклым профилем толщиной 10-16%!

форма и удлинение лопастей авиамодельных винтов

Самый распространёный вид пропеллера в авиамоделизме ----это двухлопастный винт фиксированного шага. Основные формы задают дизайн, распределение тяги по радиусу, сопромат и технологию изготовления. Удлинение лопасти Куд-----это соотношение ширины в сечении 0.75 радиуса к полной длине лопасти до оси вращения

1) исторически эллипсоидная форма лопасти называется русским винтом при Куд=5-6 обычно слоуфлаеры из термопластика,

2) прямоугольная при Куд=7-8 обычно для двс из реактопластика с толстой комлей лопастей,

3) трапецивидная с сужением 2.5-3 и Куд=9-10 типа диджиай стиль и т-моторс,

4) типа китового плавника сложной современной формы Куд=6-8 типа граупнер и аэронавт стиль,

5) оригинальной гибридной формы с сужением 2-2.5 и Куд=7-10 типа апс стиль,

6) усеченный овал с Куд=6-7 скоростные высокооборотные деревянные или пластмассовые,

7) оригинальный винт Книжникова ВВ сложной формы с удлинением лопастей 6-7.

кпд винта от габаритов

Идеальный винт при вращении в упругой среде типа воздух и вода не имеет профильное сопротивление лопастей, трения, срыва потока с лопастей и потерю мощности на закручивание потока !


КПД пропульсивной системы полёта в целом(внешний кпд)--- это соотношение поглащенной мощности планером к мех. мощи на валу!КПДвнеш=Fx V / M w


На практике начальный кпд или Кво воздушных винтов в большой авиации 0.99 или 99% обусловлен огромными габаритами диаметром 6-8 метров,много лопастностью 4-8штук, узкими с большим удлинением лопастями и большим числом Рейнольдса более двух миллионов, низким профильным сопротивлением, малой шероховатостью и низкой частотой вращения 660-780 об/мин и большим относительным шагом, как соотношение шага к диаметру 2.5-3 раза и в полёте имеет полный кпд около 95% при горизонтальной скорости полёта 700-900 км в час!

В средней авиации кпд в полёте около 90% при РЕ=1000 000, так как меньше габариты диаметром 4-5 и больше частота вращения 900-1000 при скоростях 500-600 км в час!

в малой реальный кпд=85% не более при оборотах 1500-1800, диаметр 2-3 метра при скорости 300-400 км вчас!

у сла реальный кпд= 80% при 2400-3000 и диаметр 1.5-1.8 м при 200-250 км в час !

на бпла и ультролайтах кпд =75% при винтах 1-1.3 метра и частотой 3600-4200 150-180 км в час!

на больших авиамоделях кпд =70% при диаметрах 0.7 -.0.9м при 4800-6000 110-130 км в час!

на средних кпд=65% при д=0.4-0.6м ---- 6600-7500 при 80-100!

на малых кпд =60% при д=0.25-0.35 м -----7800-9000 при 65-75!

ну и аля паркфлаеры кпд=55% при д=0.15-0.2м ----10 000-15000 при

50-60 км/ч!

летающие игрушки кпд=50% при д=0.1-0.13м----18 000-20 000 при 40-45 км/ч

при скорости потока от винта меньше 36 км в час или 10 м/с полет на моторе не выгоден из-за низкого кпд винта менее 40%,

так как число РЕ для лопастей не более 40 000---- вязкое, липкое обтекание!то есть летать на низком крейсере на моторе невыгодно,проще выключить вмг и перейти на планирование в динаме или парение в термиках

частота вращения винта ограничена окружной скоростью кончиков лопастей и не должна превышать скорость звука из-за волнового кризиса, но на практике не более 270 м/с для ла!

относительное скольжение винта и угол атаки Приведенный угол атаки лопасти условно считается на сечении 0.75 радиуса----но на самом деле угол атаки минимален на кончике и максимален в комле, но это компенсируется изменением формы профиля и ширины лопасти для более равномерного распределения силы тяги и момента аэродинамического сопротивления по длине лопасти! Разница между геометрическим шагом и поступью на стопе задаёт скольжение! Так как угол атаки лопасти к набегающему потоку в горизонтальном полёте зависит только от относительного скольжения, а само скольжение зависит от режима полёта или потребной тяги то получается, что для квадратного винта

При пикировании в 30гр винт полностью разгружен и скольжение равно нулю и угол атаки нулевой---вырождение

1) при пологом снижениив 5-10гр скольжение минимально 0.05-0.07 и угол атаки всего 1-1.5 гр,

2) при полном газу на максимальной скорости полета скольжение уже 0.1 и угол атаки 2 градусов!

3) при полёте в пологую горку 20-30 гр возвышения или мягком вираже скольжение 0.2-0.25 и угол атаки 4-5 гр,

4) при полёте в 40-50 гр возвышения или среднем вираже скольжение 0.3-0.35 и угол атаки 6-7гр,

5) при крутой горке в 60 гр или крутом вираже скольжение 0.4 и угол атаки 8 гр,

6) при вертикальном полёте вверх скольжение 0.45 и угол атаки 10 гр,

7) на стопе скольжение квадратного винта 0.55 максимально ---- рабочий угол атаки максимален 12 градусов!

все самолётные винты сильно разружают мотор на полном газу по моменту сопротивления при прямолинейном горизонтальном полёте ла в 1.1-1.7 раз относительно режима на стопе и соответственно пропорционально падает потребляемая мощность и ток для эму----и как следствие падает текущая сила тяги от винта в полёте на максимальной горизонтальной воздушной скорости до запирания силой общего аэродинамического сопротивления планера бпла!!!

Вв является адаптивным движителем в зоне рабочих углов атаки лопасти в набегающем потоке в диапозоне 1-12гр----то есть при выполнении силовых фигур типа вираж, петля, где образуется перегрузка или горка с повышением тяги, пропеллер сам нагружает мотор мощностью с ростом от относительного скольжения и падения скорости полёта при полном газу! Это хорошо слышно по изменению частота вращения винта и тону воя от режима полета во время высшего пилотажа.

режим полета и эффективность пропеллера Из институтского курса лопаточных машин--- все типы крыльчаток осевых и центробежных это лишь разновидность винта----преобразователя мощности потока в механическую вращения при генерации, когда поступь больше шага и поток тормозится и наоборот при режиме движителя ----поступь меньше шага, а поток ускоряется! На винтах серединная часть ометаемой площади не работает на тягу и соотношение паразитной части может достигать до 10-15% от общей и зависит от формы лопастей и конструктива комли---получается дырка в блине ----- это также уменьшает тягу и кпд винта! Поэтому КПД преобразования не превышает 90% даже при больших размерах !

Так как тяга винта для самолётов не играет существенной роли от стопа до скорости сваливания, то шаг подбираеться так, чтобы срыв потока на лопастях пропадал именно на границе сваливания ла, называется подхват----то есть на стопе мотор немного перегружен по моменту сопротивления при винте фиксированного шага или вфш, чем выше нагрузка на крыло тем больше скорость сваливания и крейсер!

И поэтому для каждого режима полета есть оптимальный относительный шаг, когда эффективность винта максимальна

1) Пик тяги рассчитанный на скорость планирования с АКмах или 1.2-1.3 скорости сваливания даёт максимальную скороподъёмность типичное соотношение шага к диаметру 0.6--0.7 при КПДв=60%-63% соответственно---режим пилотажа

2) Высокий крейсер или 1.6-2.0 скорости сваливания дает пик кпд на винте H/D = 0.8-0.9 при КПДв=65%-67%---для бпла

3) Пик скорости на гонках 1.0-1.1 шага к диаметру винта при КПДв=69%-71%--правда долго разбегаться будет при винте фиксированного шага---гонка

или нужен дополнительный ускоритель в виде тягача или резиновая катапульта  или пороховой  двигатель или сразу виш !

4) Тяговые винты с H/D = 0.4-0.5 имеет смысл использовать лишь в случае пика тяги на стопе(3Д-пилотаж), когда приходиться вертикально стартовать с малых площадок и быстро набрать безопасную высоту---- правда эффективность этих винтов в горизональном полете очень низка при КПДв=40%-50%---поэтому выгодней летать импульсами----короткий крутой набор высоты с углом 60-90 град потом долгое планирование с максимальным аэрокачеством--- процесс повторяется с высоты 50-60 и до 300-500м для мотопланеров  !

оптимальный диаметр винта от миделя ла Шаг винта Ш определяет желаемую скорость полёта----- при постоянной частоте вращения! Чем меньше шаг, а значит и меньше скорость, тем больше ометаемая площадь,а значит больше тяга при той же мощности! Фактически диаметр винта (ометаемая площадь) отвечает за тягу в горку и шаг винта за скорость полёта, а произведение диаметра на шаг (геометрическая тяжесть движителя) за поглащённую мощность потока---чем больше это произведение, тем больше потребная мощность двигателя!!! эмпирика для авиамодельных винтов постоянная для конкретной вмг H1+D1=H2+D2

Мидель всего планера помноженный на текущий Сх определяет силу аэросопротивления полёту, а ометаемая площадь винтом определяет тягу на установившейся скорости в горизонте ----или как эффективно протащить тушку самолёта сквозь плотность воздуха!

оптимальный диаметр двухлопастного пропеллера для крылатого ла на двух скоростях планирования или 2.5 скоростей сваливания----

Dдвухлоп=CAXкр (Cyмах)0.5 или Sомет= Cyмах CAX2


практика замеров Все производители моторов рекомендуют диаметр и шаг допустимых винтов, тогда достаточно замерить тягу безменом и частоту вращения винта тахометром прямо на модели на стопе-----например винт слоуфлаер 10/4 или D=254мм и H=102мм! Проблема в том, что разные производители пропеллеров указывают разный параметр шага винта (второе значения в дюймах,первое это диаметр----некоторые пишут максимальный шаг нулевой тяги, другие геометрический шаг,третьи поступь винта на стенде! Поэтому только практические замеры тяги и оборотов на стопе дадут истиную картину хар-ки винта!!!

1) поступь винта на стопе у моря равна соотношению квадратного корня из 1.1 силы тяги к произведению диаметра на частоту К1=h=(1.1Fст)0.5/(Df) характеристка №1---- например (1.1х5.3н)0.5/( 0.254м х 110гц)=2.41/27.9=0.0865м=86.5мм -----осевая скорость потока в плоскости винта на стопе это произведение поступи на частоту 0.0865м х 110гц=9.52м/с

2) соотношение тяги к квадрату частоты К2=Fт / f2 есть х-ка №2 по тяге для винта постоянного шага Например при тяге в 530 г силы делить (110 гц)2 получаем 0.0438 г/гц2 или 0.000438н/гц2 --- потом просто пересчитывается тягу на другую частоту вращения!

3) соотношение мощности к кубу частоты вращения К3=P/f3=К2h---это х-ка №3 винта по мощности потока можно расчитать как произведение коэф тяги на поступь винта на стопе К2 х h ----самая главная характеристика винта!!! например 0.000438н/гц2 х 0.0865 м =0.0000379дж/гц2, тогда Рпот=0.0000379дж/гц2 х (110гц)3=50.4вт! Тогда электрическая потребляемая Рэл=Рпот/КПДвмг=50.4вт/0.66=75.6вт!!!

4) аэродинамическое качество винта ---- это соотношение длины окружности диаметра винта к шагу АКВ =3.14 х D / H или 3.14 делить на относительный шаг-----например 3.14 х 0.254 м / 0.1м=8 единиц-----тогда окружная скорость кончиков лопастей будет в в 8 больше осевой скорости потока в полёте, тоесть 30м/сх8=240м/с меньше 270 м/с

5) число Рейнольдса для лопасти должно превышать 60 000----Re=162bDf , где b-ширина лопасти на 0.75 радиуса в мм, D-диаметр винта в м, f-частота вращения в обор/сек например при ширине лопасти 15мм и диаметр 230мм и частоте 6.6 тысяч об/мин или 110 гц получаем 162х15х0.23х110=61 667!!!

Сила тяги авиамодельного винта на стопе на уровне моря F=0.9(Dhf)2,

где поступь эмпирически для двухлопастного винта с плосковыпуклым профилем лопасти типа ДВС или ЕР h=0.45D(H/D)0.5----

с вогнутовыпуклым профилем типа слоуфлаер h=0.5D(H/D)0.5

упрощённо для двухлопастого винта Fст=0.2D3 Н f2

Полезная мощность движителя на стопе равна произведению тяги на приращенную скорость потока в плоскости винта! Pполез=Fv=Fhf

связка статики винта с электромеханикой мотора ---фундаментальная формула тока на стопе по методу Книжникова ВВ сила тока в амперах на полном газу = тяга в ньютона х поступь винта в метрах х электро механическая константа бк мотора в обороты в секунду на вольт делить на кпд винта стопа плюс ток холостого хода

I = ( F h Ku)/КПДв + Iхх ---для всех типов винтов 

I = F Н Kхх--- удобно для тяговых винтов коптеров ш/д=0.3--0.4

например  для коптерного винта с шагом=10см на полном газу  ---10н х 0.1м х 10гц/в = 10а сила тока! 

тогда сразу подбирается мотор с потребляемым током не менее 10а и соответствующий регулятор хода

Потребляемая мощность электро-вмг на стопе ( ватт) приближенно равна произведению силы тяги ( ньютон) на максимальную теоритическую скорость потока от винта ( метры в секунду) (шаг(метр) х частоту вращения под нагрузкой (обор/сек)!

Pпотреб=mgVпол=FстVмах=FстНfст=UаккуIпотр-----это самая главная формула для электро-авиамоделей самолётов!

на практике зная четыре переменных всегда можно найти пятую неизвестную с точностью + -5%---например

1) тяга F=(UаккуIпотр)/(Нfнаг)=(10а х12в)/ (0.12м х 200гц)=120вт/24м/с=5н=500г силы

2) сила тока Iпотр= (FНfнаг)/Uакку=(10н х 0.1м х120гц)/15в=120вт/15в=8а

3) частота fнаг=(UаккуIпотр)/(FН)=(24в х15а)/(12н х 0.15м)=360вт/1.8нм=200обор/сек

4) шаг Н=(UаккуIпотр)/(fнагF)= (50в х100а)/(125гц х160н)=5000вт/20000нгц=0.25м

промышленные винты

Цены на пропеллеры в магазине одного типоразмера могут различаться в 4-5 раз------объясняется это в первую очередь брендом, материалом и качеством исполнения! Самое главное это симметричность геометрии лопастей для динамической балансировки и моменты инерции для статической балансировки-----обычно дорогие изначально сбалансированны, но лучше сразу в магазине проверить магнитным балансиром или хотя бы на отвертке----если дисбаланс большой, то лучше не покупать ! Жесткость лопастей на кручение должны соответствовать частоте вращения------например для медленных слоуфлаеров небольшая эластичность допускается, а для скоростных это неприемлимо может зафлаттерить-----при вибрациях разрушается пограничный слой на профиле и правильное обтекание лопасти,что приводит к резкому падению тяги и кпд вмг в целом! В профессиональной авиации обычно используются винты из легких металлических сплавов или угле-стекло-композитов---- в хобби широко распространены монолитные деревянные винты из твёрдых сортов и из термопластиков с прочными армирующеми нитями ----в авиамоделизме металлические пропеллеры строго запрещены!

складные винты Для бпла типа мотопланер актуально применение в режиме планирования в термичке винтов со складывающимися по потоку лопастями состоящего из хаба, кока и лопастей!

Главное обеспечить приемлимое охлаждение бк электромотора типа аутрайнер позади затеняющего кока в моторном режиме набора высоты , для этого в торце площадки хаба просверленны винтиляционные отверстия ,чтобы поток лизал не только вращающийся стакан с магнитами, но и затекал в передний торец мотора для охлаждения обмоток статора, очень важно в применении летом в жару!

Самым слабым звеном складных лопастей является комля с вращающейся осью---так как центробежные силы приходят на очень малую площадь контакта, то ни в коем случае нельзя превышать предельную частоту вращения винта иначе опасный отстрел лопасти и страшное биение вмг ! Так если на стенде на полном газу частота вращения не превышает предел ,то при пикировании на полном газу винт облегчается и мотор может повысить обороты в 1.2 раза от стопа и центробежная сила на разрыв увеличится в 1.44 раза и приведёт к разрушению ступицы или комли лопасти!!!

например промышленные хабы и лопасти отлитые из термопластика----

1) винт диаметром 305мм и шагом 230мм имеет гарантированный предел в 7000 оборотов в мин-----

2) винт диаметром 280мм и шагом 205мм имеет предел в 8000 оборотов в мин-----

3) винт д255мм ш180мм при 9000---

4) винт д230мм ш160мм 10 000----

5) д200мм ш150мм 11 000---

6) д190мм ш140мм 12 000---

7) д180мм ш130мм 13 000----

8) д170мм ш120мм 14 000----

9) д160мм ш110мм 15 000---

10) д150мм ш100мм 16 000---

физический анализ упругости винтов Есть несколько граничных частот работы винта!

1) поперечная резонансовая частота колебании лопасти характеризуется тарахтением, как звук у двс----это срыв потока на кончиках лопастей !

2) крутильная резонансовая частота отвечает за флаттер лопастей характеризуется воем!

3) частота вращения определяется прочностью комли лопасти на разрыв от ценробежных сил!

Так как добротность поперечного резонанса не высока--больше похожа на холмик в небольшом диапозоне частот --она не опасна! А вот крутильные или флаттер может привести к разрушению при затягивании процесса ---обычно производители самолетных винтов ведут расчет в первую очередь прочности на разрыв от центробежных сил и автоматом получают высокую жесткость -а значит высокую поперечную и крутильную частоты резонанса заведомо выше рабочего диапозона! Упругость можно использовать, как режим адаптации к косому потоку, так как начинающиеся крутильные автоколебания будут помогать подкручиваться лопастям в оптимальные углы атаки У лопастей винта центробежная сила на разрыв тела в комле лопасти обычно 40-50 раз больше силы тяги -----поэтому корневища лопасти делают толстым монолитом или мясистым!

воздушные импеллеры

импеллер или многолопастный винт с малым диаметром и относительно большим шагом в профилированной трубе ---это преобразователь механической мощности вращения в кинетическую мощность потока с высокой выходной скоростью и относительно малой тягой

1) типичный относительный шаг многолопастного винта 3-4 диаметра в больших турбовинтиляторных двигателях и 1.5-2 у авиамодельных импеллерах-----чем больше относительный шаг, тем больше кол-во лопастей по тождеству n=(3-5)(H/D)!

2) желательно чтобы кол-во лопастей в крыльчатке было больше и не кратно спрямляющим лопаткам ---например 4 лопасти и 3 лопатки или 6 лопастей и 5 лопаток----это связанно с частотой и амплитудой паразитной пульсацией локальных скачков давления между лопастью и лопаткой---чем тише и выше по тону звук, тем выше кпд импеллера !

3) для золотого импеллера обычно длина входной горловины равняется одному радиусу крыльчатки, длина спремляющего аппарата один радиус и длина сопла 1.25 радиусам ---итого общая длина конструкции равна 1.62 диаметрам крыльчатки! есть эмпирика ----длина фена равна шагу крыльчатки L= H,чем длинее труба, тем больше потери потока на трение о стенки!

4) соотношение входной площади губы к площади среза сопла не более 2 единиц или коэффициент сужения потока 1.4- 2-----а диаметр входного патрубка больше диаметра крыльчатки в 1.1-1.2 раза!

5) соотношение входного сечения импеллера к полному миделю самолёта 0.2-0.25 для реактивных полукопий!

расчёт тяги и мощи импеллеров

Для большинства импелеров с относительным шагом 1.5-1.6, где поступь примерно равна диаметру крыльчатки, есть простой расчёт силы тяги (ньютон) на уровне моря равной------ эмпирика по Книжникову ВВ произведению диаметра крыльчатки D(метр) в четвертой степени и частоты вращения f(герц) во второй степени------например F= D4 f2 =(0.075м)4 х( 500гц)2=0.000032м4 х 250 000гц2=8н=800 грамм силы! механическая мощность на валу (ватт) равна произведению тяги на диаметр и на частоту-----например 8н х0.075м х500гц= 8н х37.5м/с=300 вт! Тогда электрическая потребляемая мощность при кпд бк мотора 75% будет 375 вт!

для электропривода в импеллерах справедлива эмпирика---сила тока эд наведенная тягой это произведение силы тяги в ньютонах на диаметр крыльчатки в метрах и на кв мотора в герцах на вольт! I=F D Kхх например 8н х 0.075мм х 50гц/в=0.6х50=30а!


Тяга винта в динамике эмпирически----- Fпол=0.5Fстоп(H/D)0.5

На практике тяга винта в горизонтальном полёте на полном газу меньше в 2-3 раза от тяги на стопе----

1) падение тяги примерно в два раза у гоночных винтов (квадратные) и у импеллеров на максимальной горизонтальной скорости

2 )падение в два с половиной раза у скоростных винтов с относительным шагом Ш/Д=0.6--0.8

3) падение в три раз у тяговых винтов с Ш/Д=0.4--0.5

Личные инструменты
Пространства имён
Варианты
Действия
Навигация
Инструменты
Группа ВКонтакте