Теория пропульсивных систем-ликбез
(Удалено содержимое страницы) |
Expertx (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
+ | ТПС----автор Книжников ВВ | ||
+ | Из институтского курса лопаточных машин винт(пропеллер) и крыльчатка(импеллер) это всё разновидности движителей которые преобразуют механическую мощность вращения вала двигателя в кинетическую мощность потока среды как интеграл тяги по скорости потока!!! | ||
+ | |||
+ | В науке о пропульсивных системах (движителях) существует несколько определений КПДвинта | ||
+ | |||
+ | 1)Начальный КПДво=(0.8--0.98)=(80%-98%)!!!---это потери на профильное сопротивление лопаток(лопастей) и силу трения от шероховатости поверхности,а также сопротивление нерабочей части винта (ступица и кок), | ||
+ | |||
+ | 2)Внутренний КПДвнут=Pпоток/Рмех=(0.4--0.95)=(40%-95%)!!!---это потери на создание кинетической мощности осевого потока,как потери энергии на закручивание потока,срыв потока и вихри на кончиках лопастей(режим статики---например висение коптера или эффективность по тяге на стопе), | ||
+ | |||
+ | 3)Внешний КПДвнеш=Fтяги Vпол/Pмех=Кво Кпроп=(0%-90%)!!! или полный коэф.пропульсивной системы---это приведённая эффективность всей пропульсивной системы к движению транспорта относительно среды(режим динамики---например полёт самолёта или эффективность по скорости движения в вязкой среде) | ||
+ | |||
+ | |||
+ | Поступь винта h | ||
+ | |||
+ | Поступь это истинный шаг винта h относительно воздуха----винт всегда работает только относительно среды и он не знает, двигается ли он относительно земли , а скольжение винта задаёт угол атаки лопастей , | ||
+ | когда винт ускоряет начальный поток в плоскости винта то находиться в режиме создания положительной тяги или движитель и поступь меньше геометрического шага---- | ||
+ | когда винт тормозит набегающий поток, то режим генератора или обратной тяги и поступь больше шага винта ----так работают ветряки! | ||
+ | |||
+ | Поступь практическая на стопе для широких двухлопастных винтов с вогнутовыпуклым профилем типа слоуфлаер h=0.65(H D)^0.5 | ||
+ | |||
+ | Поступь практическая на стопе для узких двухлопастных винтов с плосковыпуклым h=0.45(H D)^0.5 | ||
+ | |||
+ | Произведение поступи на частоту вращения и есть скорость потока в сечении плоскости винта ----осевая скорость потока в плоскости винта Vв(м/с)=h(м) f(1/с) | ||
+ | |||
+ | Соотношение текущей поступи к шагу---- это коэффициент упора! (Купор=h/H=0.5- 0.95) | ||
+ | |||
+ | В упругой среде типа газ под давлением или воздух идеальный винт вкручивается за один оборот на расстояние истиной поступи, которая меньше геометрического шага винта на длину проскальзывания! | ||
+ | Соотношение скольжения к шагу-это коэф скольжения винта! Кскол=(Н-h)/H=0.5-0.05 | ||
+ | |||
+ | фундамент. тождества Купор+Кскол=1 | ||
+ | |||
+ | скольжение деленное на длину окружности текущего радиуса винта и есть арксинус угла атаки потока к сечению лопасти! | ||
+ | |||
+ | |||
+ | Реактивная тяга | ||
+ | |||
+ | Теория пропульсивных систем или движителей типа гребных винтов, пропеллеров, крыльчаток турбин, плавников, насосов и реактивных ракетных двигателей основана на классической фундаментальной теории об реактивном движении Ньютона или любое действие вызывает противодействие------то есть при непрерывном отбрасывании массы назад со скоростью приращения, система получает импульс движения вперёд или реактивную тягу! | ||
+ | |||
+ | Эта теория корректно описывает скоростные винты и импеллера! | ||
+ | |||
+ | Математически сила тяги в ньютонах---это произведение массового расхода рабочего тела (килограмм в секунду) на приращение скорости отбрасывания этого тела (метров в секунду)! | ||
+ | Массовый расход рабочего тела (кг/с)----это произведение плотности (кг/м3) на объёмный расход (м3/с) или плотность (кг/м3) на сечение ометаемой поверхности круга винтом (м2) на входную скорость потока (м/с)! dm/dt=pSVвх, где Vвх=(Vпот+Vпол)/2 | ||
+ | |||
+ | |||
+ | Приращение скорости потока в полёте у винта---это разница выходной скорости и входной (м/с)! Vпр=Vпот-Vпол | ||
+ | |||
+ | |||
+ | |||
+ | Fтяг = 0.95pо Sвинт (Vпот+Vпол)(Vпот-Vпол)/2=0.45D^2 (Vпот^2-Vпол^2)----общее уравнение тяги в полёте,где скорость потока за винтом Vпот=Vв(2)^0.5 | ||
+ | |||
+ | |||
+ | На стопе считается, что скорость полёта равна нулю-----тогда тяга это начального КПД винта х плотность х площадь ометания х на квадрат скорости потока в плоскости вращения винта! | ||
+ | |||
+ | Fст=0.5КПДво pо Sв Vпот^2=0.95pо Sв Vв^2=0.9 D^2 h^2 f^2=0.9 (D h f)^2----------формула Книжникова для реального пропеллера | ||
+ | |||
+ | pо h^2 Sв =constanta=pо h^2 х 3.14 R^2=pо D^2 h^2 х 3.14/4 =pо 0.78(Dh)^2----реактивная тяжесть винта по тяге | ||
+ | |||
+ | начальный коэф. реального винта КПДво зависит от конструктива и расположения ---- в длинном импеллере 0.8 в коротком импеллере 0.83, в носу тупого фюзеляжа 0.85 , в носу тонкой мотогондолы 0.9, в хвосте ла 0.95. | ||
+ | |||
+ | плотность воздуха на уровне моря принять за константу pо=1.25 кг/м3, то справедливы формулы расчёта на стопе | ||
+ | |||
+ | 1)сила(н) тяги это квадрат произведения диаметра(м) винта на поступь(м) на частоту(гц) Fст=КПДво(D h f)^2!!! | ||
+ | |||
+ | 2)кинетическая мощность(вт) потока от винта это произведение тяги на скорость потока в плоскости винта Pпот=Fст h f | ||
+ | |||
+ | 3) механическая мощность на валу для ДВС это соотношение мощности потока к кпд винта Рмех=Рпот / КПДв | ||
+ | |||
+ | 4) КПДвинта=КПДво КПДвнут=0.5(Сумах Kn/Кв)^0.5=0.5(Сумах Kn D/H)^0.5 | ||
+ | |||
+ | электрическая мощность в полёте для авиамоделей типа паркфлай c учетом полного кпд вмг 40%-50% это произведение текущей тяги равной силе общего сопротивления на текущую воздушную скорость ла | ||
+ | |||
+ | I U =Fx Vпол/КПДвмг=(2-2.5)Fx Vпол, где Vпол=Куп Но f ----в м/с | ||
+ | |||
+ | Пропульсивный коэффициент | ||
+ | |||
+ | квадрат соотношения скоростей полёта ла к потоку от движителя называется пропульсивным коэф. Кпроп=(Vпол/Vпот)2 | ||
+ | |||
+ | и на прямую связан с кпд транспортной системы в целом----первые значения для малой авиации вторые для авиамоделей | ||
+ | |||
+ | Кпроп= 0.9-0.8 на пике скорости и на крейсере----КПДвнеш=80%-60% | ||
+ | |||
+ | Кпроп= 0.85-0.75 на вираже ----КПДвнеш=70%-50% | ||
+ | |||
+ | Кпроп= 0.8-0.7 на максимальной скороподъёмности при наборе высоты ----КПДвнеш=60%-45% | ||
+ | |||
+ | Поэтому не выгодно использовать прямой трд на относительно малых скоростях полёта----там скорость потока или истечения струи газов 400-600 м в с , а наши до звуковые скорости полета всего 20-50 м / с, но вот преобразовать мощность трд в медленное вращение большого винта выгодно ---------скорость потока от винта чуть больше и сравнима со скоростью полета! | ||
+ | Турбовинтовые и турбо-вентиляторные востребованы в большой авиации на около звуковых скоростях! | ||
+ | Разность скоростей потока и полёта это приращение или реактивная составляющая скорости -----поэтому эти движители и называются пропульсивными системами по реактивному закону Ньютона о количестве движения! | ||
+ | |||
+ | |||
+ | Скольжение и угол атаки | ||
+ | |||
+ | Соотношение длины проскальзывания к шагу называется коэффициентом скольжения или Кскол и он определяет угол атаки лопасти! | ||
+ | |||
+ | На стопе скольжение однолопастного квадратного винта ,где шаг равен диаметру, Кскол=1-Купор=1- 0.36=0.64 максимально!значит при той же частоте вращения скорость отбрасываемого потока минимальна и мала тяга и кпд винта на стопе всего 55% при угле атаки лопасти в 15 град ---полный срыв! | ||
+ | |||
+ | если добавить вторую лопасть ---то Кскол=1-0.43=0.57 или кпд двухлопастного квадратного винта уже 60% на стопе! скорость потока вырастает в 1.2 , а тяга в 1.4 раза при угле 12 град---начало срыва! | ||
+ | |||
+ | при трёхлопастном варианте Кскол=1-0.5=0.5 или кпд=65%, скорость вырастает в 1.4 раза, а тяга в 2 раза при угле в 8 град! | ||
+ | |||
+ | при четырех лопастном Кскол=1-0.56=0.44 или кпд уже 70%,скорость растёт в 1.6 раза и тяга в 2.6 раза по отношению к однолопастному, при угле 6 град наблюдается пик тяги на стенде! | ||
+ | |||
+ | Вывод----- при уменьшении скольжения увеличивается упор и кпд идеального винта по тяге на стопе! | ||
+ | |||
+ | |||
+ | Много-лопастность | ||
+ | |||
+ | Про много лопастность винта--- физически доказано по закону Ломоносова что массово-секундный расход воздуха через ометаемую площадь винта равен тому же массовому количеству воздуха в секунду взаимодействующего с однолопастным винтом за один оборот,то после математических выкладок получается, что | ||
+ | поступь винта h на стенде равняется толщине потока работающего с лопастью ! | ||
+ | или трем-четырем ширинам лопасти В в её середине при оптимальных углах атаки h=(3-4)В | ||
+ | Отсюда вытекает, что при малом соотношении шага к диаметру винта 0.05-0.15 характерных тяговым и в особенности вертолётным лопастям получаются очень узкими с большим удлинением лопастей 20-30 ! а коэффициент перекрытия или соотношение суммы площадей всех лопастей(обычно 2-4 штуки) к ометаемой винтом очень низок 0.01-0.02 и малы рабочие углы атаки лопастей 1-2 градуса! | ||
+ | Так как однолопастный винт с относительно большим шагом имеет малое удлинение лопасти а значит и высокое индуктивное сопротивление, то расщепление на энное кол-во лопастей для сохранение высокого аэродинам. качества винта в целом выгодно h=(3-4)В n -----где В=ширина лопасти в её середине , n кол-во лопастей! | ||
+ | Далее получается. что при увеличении геометрического шага винта, а значит и поступи надо увеличивать ширину лопастей или их кол-во ,выгоднее кол-вом чтобы удлинение осталось прежне высоким! | ||
+ | Поэтому в импеллерах, где шаг изначально большой и составляет 3-4 диаметра крыльчатки получаем большое кол-во лопастей ---доходит до 40 штук у турбо-вентиляторных вмг размером до 3-4 метров в диаметре, а коэффициент перекрытия достигает единицы! | ||
+ | |||
+ | смотри также статью "инженеринг винта" | ||
+ | |||
+ | |||
+ | Аэродинамическое качество винта | ||
+ | |||
+ | У винта как движителя есть понятие приведенного аэродинамического качества к радиусу----АКВ=3.14 D/H---- это характеризует относительный момент сопротивления вращению или реактивный момент от винта , который скручивает планер по продольной оси в противоположную сторону направления вращения . например АКВ квадратного винта = 3.14 -----то есть сила сопротивления вращению в 3.14 раза меньше силе тяги----но и скорость осевого потока также в 3.14 меньше чем окружная скорость кончиков лопастей в полёте! | ||
+ | |||
+ | У винта с Ш к Д 0.3 типичного для мультироторных вмг АКВ=10! | ||
+ | |||
+ | У сверхскоростных импеллеров, где шаг в три раза больше диаметра крыльчатки АКВ=1! | ||
+ | [[Файл:пе-2.jpg]] |
Версия 20:50, 13 августа 2023
ТПС----автор Книжников ВВ
Из институтского курса лопаточных машин винт(пропеллер) и крыльчатка(импеллер) это всё разновидности движителей которые преобразуют механическую мощность вращения вала двигателя в кинетическую мощность потока среды как интеграл тяги по скорости потока!!!
В науке о пропульсивных системах (движителях) существует несколько определений КПДвинта
1)Начальный КПДво=(0.8--0.98)=(80%-98%)!!!---это потери на профильное сопротивление лопаток(лопастей) и силу трения от шероховатости поверхности,а также сопротивление нерабочей части винта (ступица и кок),
2)Внутренний КПДвнут=Pпоток/Рмех=(0.4--0.95)=(40%-95%)!!!---это потери на создание кинетической мощности осевого потока,как потери энергии на закручивание потока,срыв потока и вихри на кончиках лопастей(режим статики---например висение коптера или эффективность по тяге на стопе),
3)Внешний КПДвнеш=Fтяги Vпол/Pмех=Кво Кпроп=(0%-90%)!!! или полный коэф.пропульсивной системы---это приведённая эффективность всей пропульсивной системы к движению транспорта относительно среды(режим динамики---например полёт самолёта или эффективность по скорости движения в вязкой среде)
Поступь винта h
Поступь это истинный шаг винта h относительно воздуха----винт всегда работает только относительно среды и он не знает, двигается ли он относительно земли , а скольжение винта задаёт угол атаки лопастей , когда винт ускоряет начальный поток в плоскости винта то находиться в режиме создания положительной тяги или движитель и поступь меньше геометрического шага---- когда винт тормозит набегающий поток, то режим генератора или обратной тяги и поступь больше шага винта ----так работают ветряки!
Поступь практическая на стопе для широких двухлопастных винтов с вогнутовыпуклым профилем типа слоуфлаер h=0.65(H D)^0.5
Поступь практическая на стопе для узких двухлопастных винтов с плосковыпуклым h=0.45(H D)^0.5
Произведение поступи на частоту вращения и есть скорость потока в сечении плоскости винта ----осевая скорость потока в плоскости винта Vв(м/с)=h(м) f(1/с)
Соотношение текущей поступи к шагу---- это коэффициент упора! (Купор=h/H=0.5- 0.95)
В упругой среде типа газ под давлением или воздух идеальный винт вкручивается за один оборот на расстояние истиной поступи, которая меньше геометрического шага винта на длину проскальзывания! Соотношение скольжения к шагу-это коэф скольжения винта! Кскол=(Н-h)/H=0.5-0.05
фундамент. тождества Купор+Кскол=1
скольжение деленное на длину окружности текущего радиуса винта и есть арксинус угла атаки потока к сечению лопасти!
Реактивная тяга
Теория пропульсивных систем или движителей типа гребных винтов, пропеллеров, крыльчаток турбин, плавников, насосов и реактивных ракетных двигателей основана на классической фундаментальной теории об реактивном движении Ньютона или любое действие вызывает противодействие------то есть при непрерывном отбрасывании массы назад со скоростью приращения, система получает импульс движения вперёд или реактивную тягу!
Эта теория корректно описывает скоростные винты и импеллера!
Математически сила тяги в ньютонах---это произведение массового расхода рабочего тела (килограмм в секунду) на приращение скорости отбрасывания этого тела (метров в секунду)! Массовый расход рабочего тела (кг/с)----это произведение плотности (кг/м3) на объёмный расход (м3/с) или плотность (кг/м3) на сечение ометаемой поверхности круга винтом (м2) на входную скорость потока (м/с)! dm/dt=pSVвх, где Vвх=(Vпот+Vпол)/2
Приращение скорости потока в полёте у винта---это разница выходной скорости и входной (м/с)! Vпр=Vпот-Vпол
Fтяг = 0.95pо Sвинт (Vпот+Vпол)(Vпот-Vпол)/2=0.45D^2 (Vпот^2-Vпол^2)----общее уравнение тяги в полёте,где скорость потока за винтом Vпот=Vв(2)^0.5
На стопе считается, что скорость полёта равна нулю-----тогда тяга это начального КПД винта х плотность х площадь ометания х на квадрат скорости потока в плоскости вращения винта!
Fст=0.5КПДво pо Sв Vпот^2=0.95pо Sв Vв^2=0.9 D^2 h^2 f^2=0.9 (D h f)^2----------формула Книжникова для реального пропеллера
pо h^2 Sв =constanta=pо h^2 х 3.14 R^2=pо D^2 h^2 х 3.14/4 =pо 0.78(Dh)^2----реактивная тяжесть винта по тяге
начальный коэф. реального винта КПДво зависит от конструктива и расположения ---- в длинном импеллере 0.8 в коротком импеллере 0.83, в носу тупого фюзеляжа 0.85 , в носу тонкой мотогондолы 0.9, в хвосте ла 0.95.
плотность воздуха на уровне моря принять за константу pо=1.25 кг/м3, то справедливы формулы расчёта на стопе
1)сила(н) тяги это квадрат произведения диаметра(м) винта на поступь(м) на частоту(гц) Fст=КПДво(D h f)^2!!!
2)кинетическая мощность(вт) потока от винта это произведение тяги на скорость потока в плоскости винта Pпот=Fст h f
3) механическая мощность на валу для ДВС это соотношение мощности потока к кпд винта Рмех=Рпот / КПДв
4) КПДвинта=КПДво КПДвнут=0.5(Сумах Kn/Кв)^0.5=0.5(Сумах Kn D/H)^0.5
электрическая мощность в полёте для авиамоделей типа паркфлай c учетом полного кпд вмг 40%-50% это произведение текущей тяги равной силе общего сопротивления на текущую воздушную скорость ла
I U =Fx Vпол/КПДвмг=(2-2.5)Fx Vпол, где Vпол=Куп Но f ----в м/с
Пропульсивный коэффициент
квадрат соотношения скоростей полёта ла к потоку от движителя называется пропульсивным коэф. Кпроп=(Vпол/Vпот)2
и на прямую связан с кпд транспортной системы в целом----первые значения для малой авиации вторые для авиамоделей
Кпроп= 0.9-0.8 на пике скорости и на крейсере----КПДвнеш=80%-60%
Кпроп= 0.85-0.75 на вираже ----КПДвнеш=70%-50% Кпроп= 0.8-0.7 на максимальной скороподъёмности при наборе высоты ----КПДвнеш=60%-45%
Поэтому не выгодно использовать прямой трд на относительно малых скоростях полёта----там скорость потока или истечения струи газов 400-600 м в с , а наши до звуковые скорости полета всего 20-50 м / с, но вот преобразовать мощность трд в медленное вращение большого винта выгодно ---------скорость потока от винта чуть больше и сравнима со скоростью полета! Турбовинтовые и турбо-вентиляторные востребованы в большой авиации на около звуковых скоростях!
Разность скоростей потока и полёта это приращение или реактивная составляющая скорости -----поэтому эти движители и называются пропульсивными системами по реактивному закону Ньютона о количестве движения!
Скольжение и угол атаки
Соотношение длины проскальзывания к шагу называется коэффициентом скольжения или Кскол и он определяет угол атаки лопасти!
На стопе скольжение однолопастного квадратного винта ,где шаг равен диаметру, Кскол=1-Купор=1- 0.36=0.64 максимально!значит при той же частоте вращения скорость отбрасываемого потока минимальна и мала тяга и кпд винта на стопе всего 55% при угле атаки лопасти в 15 град ---полный срыв!
если добавить вторую лопасть ---то Кскол=1-0.43=0.57 или кпд двухлопастного квадратного винта уже 60% на стопе! скорость потока вырастает в 1.2 , а тяга в 1.4 раза при угле 12 град---начало срыва!
при трёхлопастном варианте Кскол=1-0.5=0.5 или кпд=65%, скорость вырастает в 1.4 раза, а тяга в 2 раза при угле в 8 град!
при четырех лопастном Кскол=1-0.56=0.44 или кпд уже 70%,скорость растёт в 1.6 раза и тяга в 2.6 раза по отношению к однолопастному, при угле 6 град наблюдается пик тяги на стенде!
Вывод----- при уменьшении скольжения увеличивается упор и кпд идеального винта по тяге на стопе!
Много-лопастность
Про много лопастность винта--- физически доказано по закону Ломоносова что массово-секундный расход воздуха через ометаемую площадь винта равен тому же массовому количеству воздуха в секунду взаимодействующего с однолопастным винтом за один оборот,то после математических выкладок получается, что поступь винта h на стенде равняется толщине потока работающего с лопастью ! или трем-четырем ширинам лопасти В в её середине при оптимальных углах атаки h=(3-4)В Отсюда вытекает, что при малом соотношении шага к диаметру винта 0.05-0.15 характерных тяговым и в особенности вертолётным лопастям получаются очень узкими с большим удлинением лопастей 20-30 ! а коэффициент перекрытия или соотношение суммы площадей всех лопастей(обычно 2-4 штуки) к ометаемой винтом очень низок 0.01-0.02 и малы рабочие углы атаки лопастей 1-2 градуса! Так как однолопастный винт с относительно большим шагом имеет малое удлинение лопасти а значит и высокое индуктивное сопротивление, то расщепление на энное кол-во лопастей для сохранение высокого аэродинам. качества винта в целом выгодно h=(3-4)В n -----где В=ширина лопасти в её середине , n кол-во лопастей! Далее получается. что при увеличении геометрического шага винта, а значит и поступи надо увеличивать ширину лопастей или их кол-во ,выгоднее кол-вом чтобы удлинение осталось прежне высоким! Поэтому в импеллерах, где шаг изначально большой и составляет 3-4 диаметра крыльчатки получаем большое кол-во лопастей ---доходит до 40 штук у турбо-вентиляторных вмг размером до 3-4 метров в диаметре, а коэффициент перекрытия достигает единицы!
смотри также статью "инженеринг винта"
Аэродинамическое качество винта
У винта как движителя есть понятие приведенного аэродинамического качества к радиусу----АКВ=3.14 D/H---- это характеризует относительный момент сопротивления вращению или реактивный момент от винта , который скручивает планер по продольной оси в противоположную сторону направления вращения . например АКВ квадратного винта = 3.14 -----то есть сила сопротивления вращению в 3.14 раза меньше силе тяги----но и скорость осевого потока также в 3.14 меньше чем окружная скорость кончиков лопастей в полёте!
У винта с Ш к Д 0.3 типичного для мультироторных вмг АКВ=10!
У сверхскоростных импеллеров, где шаг в три раза больше диаметра крыльчатки АКВ=1!