Сопромат-ликбез

Материал из Multicopter Wiki
Перейти к: навигация, поиск

теория сопротивления материалов ---автор Книжников ВВ

сопромат---это подраздел механики описывающий законы прочности конструкций и сохранения устойчивости формы и вплотную связан с хар-ками строительных материалов применяемых в дронах!!! смотри статью "физическая химия"

силовая деталь может работать на сжатие, разрыв, изгиб, кручение,срез,сдвиг!!! предел прочности на конкретное противодействие внешним приложенным силам и моментам определяется необходимой площадью сечения детали!

замкнутый поперечный контур силовой обшивки называемый кессоном и имеет максимальную жесткость формы ----разновидность это монокок!

при жесткой посадке ла(нагрузка ударного вида) для сохранение формы жестких элементов конструкции всегда надо использовать гасящий энергию удара буфер из эластичного материала типа пенорезина и подобного при этом перегрузка уменьшается на порядок ---например кок,бампер,посадочная лыжа,колёса,боковые ограничители!

самая распространенная нагрузка это изгиб ----когда силовая балка противодействует поперечному моменту сил, при этом одна полка работает на сжатие и противоположная на разрыв-----например труба(кессон круглый, квадратный, треугольный, формы лобика крыла), двухтавр как силовой элемент крыла типа лонжерон, лучи в мультироторах, рессоры в автомобилях!

на  разрыв работают растяжки в виде тросов,спиц,строп, резьбовых винтов,ткани и плёнки!
на сжатие подкосы,тяги в виде стержней или профилированных труб!
на срез работают монолитные стержни в виде арматуры, проволки, болтов, саморезов, заклёпок!
на кручение работают торсионы типа валов, труб!
на сдвиг двух элементов работают клея -----жесткие типа эпоксид,полиэфир,цианокрилата и эластичные типа казеиновый,ПВА,полиуретан,каучуковый! 

расчёт всегда ведётся в пределах упругих деформаций конструкции---модуль упругости, которая позволяет полностью восстановить предыдущее состояние материала без непоправимого пластического изменения формы детали или разрушения!----

поэтому всегда используется коэф.запаса прочности  1.5-2  для пиковых нагрузок!!!

основные материалы применяемые в робототехнике----это металлические сплавы, термопласты и реактопласты, дерево вдоль волокон, резина и клея !

например рассчитать лонжерон для трапецевидного крыла микродрона композитного изготовления типа пено-ядро ламинированное скотчем----принимаем максимальную перегрузку 5же,тогда при полётной массе 1кг вес будет уже 5кгс,при размахе 100см плёчо САХ защемлённой консоли около 20см и поперечный момент силы на изгиб 50кгс х см, при толщине профиля в корне полукрыла в 2.5 см , сила сжатия верхней полки 20 кгс ! если использовать сосновую рейку с модулем 350кгс/см2 то сечение всего 0.06см2 или 2х3 мм2, с учётом сопротивления самого пенопласта и обшивки коэф запаса прочности в полтора раза гарантирован!!! нижняя полка обычно имеет сечение в полтора раза меньше и работает на разрыв, то есть 2х2мм2!!!

 дерево с пенопластом хорошо клеится на столярный ПВА!


в сложных конструкциях важно понятие терморасширение разных материалов---термический коэф.расширения должен быть одинаковый, иначе возможно прослабление соединений или деформация поверхностей при перепадах температуры !!!

изначально живучесть ла или ресурс в целом определяет выбор материалов в зависимости от класса----например

1)микродрон----пенопластовый планер ламинированный прочной плёнкой,бутылочный фюзеляж самолёта, деревянная рама и лучи квадрокоптера показывают феноменальную живучесть при каждодневной эксплуатации, ( мой птицелёт-орёл полётной массой 600г за 12 лет налетал 5000км при общем ресурсе 120часов) !!!

2) минидрон-----лк -бесхвостка выполненный по позитивной композитной технологии (пенопластовое ядро обклееное тонким стеклопластиком толщиной 0.1-0.2мм),карбоновая рама и лучи для мультикоптера!

3)мидидрон-----композитный бпла матричного исполнения с сотовым наполнителем сендвича толщиной 3-5мм!

4)максидрон-----стеклопластиковый самолёт по листовой технологии с толщиной промышленного стеклотекстолита 0.5-1,5мм(биплан АЭРОБАЙК)!

5)мегадрон-----металлический дрон по листовой технологии из алюминиевого проката толщиной 0.3-0.5мм!

более подробно смотри статью "композит"


Живучесть

Конструкция несущей платформы дрона и отдельных выступающих узлов устойчивая к импульсным(ударным) нагрузкам называется адаптивной и 
многократно поднимает ресурс всего дрона!!! 

Есть некоторые противоречия с точки зрения сопромата,аэродинамики и массы ла-----например жесткая гладкая поверхность дрона имеет минимальное сопротивление трению об воздух или воду, так все жесткие конструкции отлично держат равномерную статическую нагрузку и сохраняют изначальную форму, но очень уязвимы к точечным ударам и ломаются из за хрупкости , а это очень важно при постоянной эксплуатации, переноске и хранении!!!

С другой стороны эластичные конструкции из упругих материалов очень хорошо переносят неаккуратный вандализм----например жесткая посадка,таран,столкновение с препятствием, задевание выступающих элементов за косяки дверей и тд, но при этом достаточно сильно деформируются при номинальных нагрузках!!!

С точки зрения механики, чем легче масса дрона тем меньше мощность на передвижение , но перегрузка определяет сечения строительных элементов конструкции и значит сам вес----поэтому приходиться искать неординарные решения по применению различных материалов с разными физическими свойствами для поиска удачного компромисса-----авиация это вершина всех передовых технологий!!!

более подробно смотри статью "физическая химия"

Сопромат.jpg

Личные инструменты
Пространства имён
Варианты
Действия
Навигация
Инструменты
Группа ВКонтакте