Расчёт самолёта-ликбез

Материал из Multicopter Wiki
Перейти к: навигация, поиск

Статья----автор Книжников ВВ

аэродинамика планера----смотри статью "динамика полёта крылатого ла"

скорость планирования на уровне моря для плосковыпуклого профиля крыла толщиной 12%----это корень из удвоенной нагрузки Vпл(м/с)=(2m(г)/s(дм2))^0.5, так как нагрузка 1г/дм2 эквивалентна 1Н/м2=1Паскаль!

Например при 25 г/ дм2 получаем корень из 50 равный всего 7.1 м/с, а при 60 г/дм2 уже около 11 м/с, при 100 г/дм2 получаем 14 м/с!

Именно скорость планирования на максимальном аэродинамическом качестве определяет ветропробиваемость планера!!!

Зная АК планера как удлинение крыла с коэф 1.3 для авиамоделей можно узнать вертикальную скорость снижения -----например для планера с удлинением 10 и АК=13, нагрузкой на крыло 25 г/дм2 получаем 7.1 м/с делить на 13 равную 0.54 м/с------ то есть при силе термика более 54 см/с планер начнёт парить ! У спортивных парителей с размахом в 4 метра скорость снижения около 30 см/с без термика и высоту в 200 метров они сливают примерно за 660 секунд или 11 мин и даже при слабом термике они могут парить беспосадочно весь день.

Скорость сваливания для плосковыпуклого крыла  равна 0.8 скорости планирования на максимальном качестве планера!


Центровка классических ла

Для классики  удобно использовать простую формулу Хцм в процентах САХ крыла оптимальный -----0.5Аго100%=Хцм%
Аго коэф. продольной устойчивости это  произведение соотношений площади стабилизатора к площади крыла и плеча к сах---Аго=(Sстаб/Sкрыл)(Вплеч/САХкр)  

Например для стабилизатора площадью 2 дм2 и крыла площадью 10 дм2 соотношение равно 0.2 ----а соотношение плеча от центра давления крыла до центра давления стабилизатора 4дм при САХ крыла в 1 дм равно 4-----тогда Аго=0.2х4=0.8, а точку центра масс получаем в 0.5х0.8х100%=40%сах или 0.4 дм=40мм!

пределы балансировки -----Хцм=(0.4--0.6) Вплеч Sстаб / Sкрыл  
 

При этом допустимый диапазон центровки 0.4Аго100% предельно передняя ---- при высокой турболентности в приземлённом слое повышается устойчивость !

0.6Аго100% предельно задняя центровка допустимо летать только в штилевую погоду или парить в термиках----управление по тангажу становиться очень чутким !

Вертикальный киль делают по правилу половины площади стабилизатора---- хватит на курсовую устойчивость!
Установочный угол заднего стабилизатора  минус пару-тройку градусов относительно крыла ----у ПГО длинноносой "утки" плюс пару-тройку градусов относительно крыла!


Диапазон скоростей ла

Соотношение максимальной горизонтальной скорости самолёта к скорости сваливания называется коэффициентом запаса по скорости Кск и определяет кинетическую энергию для ла------например

для медленно летающих 3д пилотажек, парителей достаточно 1.6 кратное соотношение скоростей,

для БПЛА и птицелётов-2,

для пилотаг и бойцовок уже-2.5,

для коротких лк-3,

для хотлайнеров-3.5,

для скоростных гонок-4

скорость потока от винта на полном газу,как произведение шага на частоту вращении должна быть в 1.1 раза больше максимальной воздушной скорости ла !

диапазон Кск=1-1.25 называется вторым режимом и не используется при горизонтальном полёте из-за предсрывных углов атаки крыла и опасности сваливания на крыло в штопор необходимо увеличить скорость полёта до круизной при Кск=1.5-1.6 пологим пикированием на планере или увеличить газ на самолёте до 45-50%!


Тяговооружённость ла

Тяговооружённость это соотношение тяги на стопе при полном газе к весу самолёта---- Тст=Fст/mg

у спортивных парителей в 2 раза,

У 3д пилотаг в 1.6,

у конвертопланов и втол-1.3

у пилотаг и бойцовок-1.0,

у тренеров стартующих с руки-0.9

у гонок и скоростных-0.8,

у гидро-самолётов-0.7,

у хотлайнеров и грузовиков-0.6 ,

у колёсных и на лыжах бпла-0.5,

у бпла лк стартующих с катапульты всего-0.4,

у эконом классов типа мотопланер достаточно-0.3!

Минимальная тяговооруженность ла при которой возможен прямолинейный полёт обратно пропорциональна АКмах ------- Тмин=1/АКмах!
Разница-дельта максимальной тяговооруженности на полном газу и минимальной потребной определяет угол подъёма на втором режиме(он же глиссада при 
планировании без мотора на АКтек)----например синус угла подъема равен дельте, а котангес угла это текущее аэродинамическое качество! округленно:

синус 3 град----дельта Тмин=0.05 ----АКтек=20

6 гр----0.1----10

12гр----0.2----5

20гр----0.3-----3

25гр----0.4----2.2

30гр----0.5-----1.8

35гр----0.6----1.5

45гр---0.7-----1

60гр---0.9-----0.6

90гр---1.0-----0

При максимальной тяговооруженности бпла 0.4 и и АКмах=10 получаем дельту всего 0.3 или 18 градусов угла подъёма!


Режимы от нагрузок

Существуют пять основных режима работы электро вмг в зависимости от режимов полёта ла, где текущая поступь винта увеличивается с разгрузкой вмг по моменту сопротивления----например

длина текущей поступи меняется как(hстоп=h1)<h2<h3<h4<(h5=Hо=1.25Нгеом),

и длина скольжение Lтек=Hо-hтек


h1) самый высоконагруженный режим это момент трогания при разбеге на полном газу или режим стопа характеризуется пиком момента сопротивления наведённый тягой винта M=Fh1/2ПИ на максимальных углах атаки лопастей , то есть максимальное скольжение винта относительно среды и пик мощности мотора ------кратковременная пиковая сила тока через электромотор на максимальной удельной мощности 4-6 вт/г ограниченна удельной тепловой мощностью рассеивания не более 1вт/г при среднем обдуве 15-20 м/с с приращением температуры 100 градусов С плюс температура воздуха!!!


академическая формула тяги винта на уровне моря на стопе --- Fст=6(ГТВ)fст^2!

где----торсионная плотность воздуха 6(кг/м3)=0.5ро(Пи)^2

геометрическая тяжесть винта ГТВ(м4)=0.62 Sл Сумax D (n D H)^0.5, где Sл(м2)---рабочая площадь одной лопасти и n=кол-во лопастей

частота вращения эд под пиковой нагрузкой fнаг(Гц)=(Коб КПДэд Kхх U)=(0.6нано--0.65микро--0.7мини--0.75миди--0.8макси)fхх!!!


D=CAXкр Cyмах ((0.5микро--0.7макси) (Kск)Х/Как)^0.5!!! -----для всех типов крылатых ла
эмпирика для авиамоделей----Dв=1.1Cyмах CAXкр!  и  Нв=0.9CAXкр!

h2) чуть менее тяжелый режим это набор высоты под углом к горизонту в набегающем потоке или в крутом вираже----разгрузка винта по моменту сопротивления и падение силы тока и мощности потребления в 1.1 раза от режима стопа!!!

коэф. относительного запаса тяги Кт или перегрузка ла в вираже зависит от произведения тяговооруженности Tст на максимальное аэродинамическое качество AKмах ------

Kперегрузка=Кт=Fст/Fxmin=Tст AKмах=(Kск)^2

тяга при подъёме в горку это сумма векторов силы тяжести и аэродинамической нормали крыла и минимального лобового сопротивления ла в полёте или тяговооруженность в горке это сумма синуса угла подъёма а и обратной 1/АКмах=Сх/Су----

сила тяги Fобщ=Fрезульт+Fх=mg(sin a+1/AKmax)=0.71Iст/HоKxx-----

тяговооруженность вмг Т=F/mg=(sin a+1/AKmax) -----

вертикальный набор высоты при большой энерговооруженности ла более 300вт/кг полётной массы,---- тогда максимальная тяга в полёте Fобщ=mg+Fх=1.1 mg

сила тока от массы ла, геометрии винта и эл-мех.константы----

I=(1.1mg)(0.6Hо) (Коб Kxx)/КПДв=10 m Н Кхх


h3) режим вмг в горизонтальном полёте на максимальной воздушной скорости ла на полном газе при реактивной тяге запертой лобовым сопротивлением с разгрузкой момента винта в 1.3 раза от стенда

коэф . относительного запаса скорости полёта----

Кск=Vпол/Vсв=(Тст х АКмах)^0.5=(Fст/Fxmin)^0.5=(Kт)^0.5

макси. скорость гориз. полёта -------Vмах=Kск Vсв


зависимость силы лобового сопротивления от запаса скорости полёта ла----

Fx=mg/AKтек=10m(Kск)^Х /AKмax, или по телеметрии Fx =I/1.3 Н Кхх
где степень нарастания Х=1 для тонкого симметричного профиля крыла,
Х=1.1 для 10% симметричного профиля крыла
Х=1.2 для несимметричного двояковыпуклого,
Х=1.3 для змееобразных,
Х=1.4 для плосковыпуклого,
Х=1.6 для вогнутовыпуклого!!!
сила тока в полёте I=1.3Fx Н Кхх 

связь эффективности пропульсивной системы (внешний КПДв)---

КПДпроп.сис=КПДнач.винта х(Куп)^2=(0.85--0.95)х(Vполёт/Vпоток)^2


h4) разгруженный режим вмг в полгаза---это крейсерская скорость горизонтального полёта на максимальном АК или скорость планирования при оптимальном угле атаки крыла ----

Vплан=(Кпл mg/Sкр)^0.5

Кпл=1.5 для вогнутовыпуклого----Кпл=2.0 плосковыпуклого---- Кпл=2.5 двояковыпуклого и змееобразного профилей---Кпл=3.0 симметричного

I=mg H Kxx/ AKmax

h5) максимально разгруженный режим вмг это пологое пикирование на полном газу под углом в 10-30гр, когда винт полностью вырождается в нулевую тягу----максимальная воздушная скорость Vмах=Hfхх= Ho U Kxx----Iпик=Iхх

шаг винта нулевой тяги Но=Нгеом(Сулоп)Ч----где Сулоп=Сумах профиля лопасти, степень Ч=0.5D/Hгеом, эмпирически Но=1.2Нгеом


методика хорошо описывает самолётные винты с относительным шагом Кв=ш/д=0.6-1.1

Общее уравнение полёзной мощности полёта(ватт) как произведение силы тяги вмг(ньютон) на скорость полёта ла(метр/сек)

Pпол=Fтяги Vпол=(2пиM KПДв/h)(hf)=MwKПДв=PмехKПДв --- для поршневых ДВС, где КПДвинта=Кво(h/Но)^2=Кво(Куп)^2=КПДвнешний=Кво Кпропульсивный=0.94(Vполёта/Vпотока)^2=0.94(0.8)^2=0.94х0.64=0.6=60%

для электро вмг авиамоделей средних габаритов (минидрон)----

Pполёт= КПДполный UI=КПДэд КПДакку КПДвнешний Рэл= 0.85 х 0.95 х 0.6 U I=0.5Рэл !!!

для паркфлаев (микродрон) с э-ВМГ ----- КПДполный= 0.80х0.9х0.55=0.4=40%


теоритическая скорость потока через винт в полёте через просадку частоты вращения Vтеор=H fпол=0.81 Hо Uакку Kxx Коб=0.9 Нгеом Uакку Kxx


мощность силовой установки в полёте

мощность на валу для винтовых поршневых ДВС ----Pмех=0.8FстVпол
электрическая потребляемая мощность ВМГ -----Pэл=FстVпол
для электро импеллеров -----Pэл=1.5FстVпол
крейсерская скорость в пол газа ----Vкрейс=0.7Vмах и круизная мощность Pкруиз=0.35Рэл


Выкос мотора

1) В авиации расположение ВМГ тянущей в носу имеет особенность по выкосу оси вала мотора для компенсации реактивного момента и закрученного потока от вращения пропеллера на плоскости ла----направление вращения по часовой или вправо со стороны пилота обычно ось наклонена вниз и вправо на пару-тройку градусов относительно вектора направления полёта,чтоб не летел боком, при этом левый вираж более манёвримый!

2) При толкающей схеме вмг в хвосте располагают на центральной оси ла при нулевых углах выкоса !

3) При вертикальном смещении вектора тяги от вмг на пилоне относительно центральной оси ла проходящей выше центра масс нужно учитывать сильный пикирующий момент на взлёте -----компенсируется рулем высоты на себя!

более подробно смотри статью "эмпирика в расчётах"

Электро4.jpg

Личные инструменты
Пространства имён
Варианты
Действия
Навигация
Инструменты
Группа ВКонтакте