Теория пропульсивных систем-ликбез

Материал из Multicopter Wiki
(Различия между версиями)
Перейти к: навигация, поиск
 
(не показаны 16 промежуточных версий 8 участников)
Строка 3: Строка 3:
 
Из институтского курса лопаточных машин винт(пропеллер) и крыльчатка(импеллер) это всё разновидности движителей которые преобразуют механическую мощность вращения вала двигателя в кинетическую мощность потока среды как интеграл тяги по скорости потока!!!Эта теория корректно описывает скоростные винты и импеллера
 
Из институтского курса лопаточных машин винт(пропеллер) и крыльчатка(импеллер) это всё разновидности движителей которые преобразуют механическую мощность вращения вала двигателя в кинетическую мощность потока среды как интеграл тяги по скорости потока!!!Эта теория корректно описывает скоростные винты и импеллера
  
В науке о пропульсивных системах (движителях) существует несколько определений КПДвинта
+
В науке о пропульсивных системах (движителях) существует несколько определений КПДвинта,где первые значения для размерности авиамоделей, вторые для малой и третьи для большой авиации
  
1)Начальный КПДво=(0.8--0.98)=(80%-98%)!!!---это потери на профильное сопротивление лопаток(лопастей) и силу трения от шероховатости поверхности,а также сопротивление нерабочей части винта (ступица и кок),
+
1)Начальный КПДво=(0.9мод--0.95мал---0.99бол)=(90%-95%-99%)!!!---это потери на профильное сопротивление лопаток(лопастей) и силу трения от шероховатости поверхности,а также сопротивление нерабочей части винта (ступица и кок),
  
2)Внутренний КПДвнут=Pпоток/Рмех=(0.4--0.95)=(40%-95%)!!!---это потери на создание кинетической мощности осевого потока,как потери энергии на закручивание потока,срыв потока и вихри на кончиках лопастей(режим статики---например висение коптера или эффективность по тяге на стопе),   
+
2)Внутренний КПДвнут=Pпоток/Рмех=(0.4--0.95)=(40%-95%)!!!---это потери на создание кинетической мощности осевого потока, как потери энергии на закручивание потока, срыв потока и вихри на кончиках лопастей(режим статики---например висение коптера или эффективность по тяге на стопе),   
 
    
 
    
3)Внешний  КПДвнеш=Fтяги Vпол/Pмех=Кво Кпроп=(0%-90%)!!!  или полный коэф.пропульсивной системы---это приведённая эффективность всей пропульсивной системы к движению транспорта относительно среды(режим динамики---например полёт самолёта или эффективность по скорости движения в вязкой среде)
+
3)Внешний  КПДвнеш=Fтяги Vпол/Pмех=Кво Кпроп=(0%-90%)!!!  или полный коэф.пропульсивной системы---это приведённая эффективность всей пропульсивной системы к движению транспорта относительно среды(режим динамики---например горизонтальный полёт самолёта или эффективность по скорости движения в вязкой среде).
  
 +
более подробно смотри статью "КПД винта"
  
Поступь винта h
+
 
 +
Поступь винта
  
 
Поступь это истинный шаг винта h относительно воздуха----винт всегда работает только относительно среды и он не знает, двигается ли он относительно земли , а  проскальзывание винта задаёт угол атаки лопастей ,
 
Поступь это истинный шаг винта h относительно воздуха----винт всегда работает только относительно среды и он не знает, двигается ли он относительно земли , а  проскальзывание винта задаёт угол атаки лопастей ,
 
когда винт ускоряет начальный поток в плоскости винта то находиться в режиме создания положительной тяги или движитель и поступь меньше геометрического шага----
 
когда винт ускоряет начальный поток в плоскости винта то находиться в режиме создания положительной тяги или движитель и поступь меньше геометрического шага----
когда винт тормозит  набегающий поток, то режим генератора или обратной тяги и поступь больше шага винта ----так работают ветряки!   
+
когда винт тормозит  набегающий поток, то режим генератора или обратной тяги и поступь больше шага винта ----так работают ветряки!
 +
 
 +
поступь на стопе прямо пропорционально зависит от кол-ва лопастей (n) и коэф.подъёмной силы (Сулоп) --- h=0.36(H D )^0.5 (п)^0.33 (Сулоп)^0.5
 +
   
 
   
 
   
 
Поступь практическая на стопе для широких двухлопастных  винтов с вогнутовыпуклым профилем типа слоуфлаер для мультикоптера----hкоп=0.6(H D)^0.5  
 
Поступь практическая на стопе для широких двухлопастных  винтов с вогнутовыпуклым профилем типа слоуфлаер для мультикоптера----hкоп=0.6(H D)^0.5  
Строка 24: Строка 29:
 
  Произведение поступи на частоту вращения и есть осевая скорость потока в сечении плоскости  винта----  Vв(м/с)=h(м) f(1/с)
 
  Произведение поступи на частоту вращения и есть осевая скорость потока в сечении плоскости  винта----  Vв(м/с)=h(м) f(1/с)
  
Соотношение текущей поступи к шагу---- это коэффициент упора! (Купор=h/H=0.4-0.95)
+
Соотношение текущей поступи к шагу от стопа до максимальной горизонтальной скорости---- это коэффициент упора! Купор=h/=(0.3--0.9)
 +
 
  
  
 
Скольжение и угол атаки
 
Скольжение и угол атаки
  
Соотношение длины проскальзывания к шагу называется коэффициентом скольжения  или Кскол  и он определяет угол атаки лопасти!
 
 
   
 
   
На стопе  скольжение однолопастного квадратного винта ,где шаг равен диаметру, Кскол=1-Купор=1-0.4=0.6 максимально!значит при той же частоте вращения  скорость отбрасываемого потока минимальна и мала тяга и кпд винта на стопе всего 55%  при угле атаки лопасти в 12 град ---полный срыв!
 
 
если добавить вторую лопасть ---то Кскол=1-0.45=0.55  или кпд двухлопастного квадратного винта уже 60% на стопе! скорость потока вырастает в 1.2 , а тяга в 1.4 раза при угле 10 град---начало срыва!
 
 
при трёхлопастном варианте Кскол=1-0.5=0.5 или кпд=65%, скорость вырастает в 1.3 раза, а тяга в 1.7 раза при угле в 8 град!
 
 
при четырех лопастном Кскол=1-0.55=0.45 или кпд уже 70%,скорость растёт в 1.4 раза и тяга в 2 раза  по отношению к однолопастному, при угле 6 град наблюдается пик тяги на стенде!
 
 
Вывод----- при уменьшении скольжения  увеличивается упор и кпд идеального винта по тяге на стопе!
 
 
 
 
В упругой среде типа газ под давлением или воздух идеальный винт вкручивается за один оборот на расстояние истиной поступи, которая меньше геометрического шага винта на длину проскальзывания!
 
В упругой среде типа газ под давлением или воздух идеальный винт вкручивается за один оборот на расстояние истиной поступи, которая меньше геометрического шага винта на длину проскальзывания!
Соотношение скольжения к шагу-это коэф скольжения винта!  Кскол=(Н-h)/H=0.6-0.05
 
  
 +
Соотношение длины проскальзывания к шагу называется коэффициентом скольжения или Кскол и он определяет угол атаки лопасти! Кскол=(Но-h)/Hо=(0.7--0.1)
 +
 
 
  фундамент. тождества Купор+Кскол=1
 
  фундамент. тождества Купор+Кскол=1
  
 
скольжение деленное на длину окружности текущего радиуса винта и есть арксинус угла атаки потока  к сечению лопасти!
 
скольжение деленное на длину окружности текущего радиуса винта и есть арксинус угла атаки потока  к сечению лопасти!
 +
 +
Вывод----- при уменьшении скольжения  увеличивается упор и кпд идеального винта по тяге на стопе!
 +
  
  
Строка 63: Строка 61:
  
  
  Fтяг =КПДво pо Sомет (Vпот+Vпол)(Vпот-Vпол)/2=0.45D^2 (Vпот^2-Vпол^2)----общее уравнение тяги в полёте
+
  Fтяг =КПДво pо Sомет (Vпот+Vпол)(Vпот-Vпол)/2=0.45D^2 (Vпот^2-Vпол^2)----общее уравнение тяги в полёте, Sомет=(Пи/4)D^2=0.78D^2
 
+
  
 
Начальный коэф. реального винта КПДво зависит от конструктива и расположения ---- в длинном импеллере 0.8  в коротком импеллере 0.83, в носу тупого фюзеляжа 0.85 , в носу тонкой мотогондолы  0.9, в хвосте ла  0.95.
 
Начальный коэф. реального винта КПДво зависит от конструктива и расположения ---- в длинном импеллере 0.8  в коротком импеллере 0.83, в носу тупого фюзеляжа 0.85 , в носу тонкой мотогондолы  0.9, в хвосте ла  0.95.
Строка 73: Строка 70:
 
   
 
   
  
  Fст=0.5КПДво pо Vпот^2=КПДво pо(0.78D^2) Vв^2=(0.8имп--0.85тян--0.9тол) (D h f)^2----------формула Книжникова для реального пропеллера на стопе
+
  Fст=0.5КПДво pо Sомет Vпот^2=КПДво pо(0.78D^2) Vв^2=(0.85тян--0.9тол) (D h f)^2----------формула Книжникова для пропеллера на стопе на уровне моря
 
   
 
   
  
1)Хар-ка винта по поступи=h(м) и частоте вращения--------осевая скорость потока на стопе Vв(м/с)=(h) f
+
1)Хар-ка винта по поступи=h(м)=(0.5сам--0.6коп)(D Н)^0.5 и частоте вращения--------осевая скорость потока на стопе Vв(м/с)=(h) f
  
2)Хар-ка винта по тяговой тяжести=0.9 D^2 h^2 (Н/Гц^2) и квадрату частоты вращения-------------сила тяги на стопе Fст(Н)=(0.9 D^2 h^2) f^2
+
2)Хар-ка винта по тяговой тяжести=0.7 ро D^2 h^2 (Н/Гц^2) и квадрату частоты вращения-----сила тяги на стопе Fст(Н)=(0.1ро Сулоп D^3 Н п^0.67) f^2
  
3)Хар-ка винта по мощностной тяжести=0.9 D^2 h^3 (Вт/Гц^3) и кубу частоты вращения-------------мощность потока на стопе Рпот(Вт)=(0.9 D^2 h^3) f^3
+
3)Хар-ка винта по мощностной тяжести=0.7 ро D^2 h^3 (Вт/Гц^3) и кубу частоты вращения---------мощность потока на стопе Рпот(Вт)=(0.2 D^3 Н^2) f^3
  
  
Строка 87: Строка 84:
 
   механическая мощность на валу для ДВС это соотношение мощности потока к кпд винта  Рмех=Рпот/КПДв, где КПДв=КПДво КПДвнут=КПДво(2h/(Н+h)!!!
 
   механическая мощность на валу для ДВС это соотношение мощности потока к кпд винта  Рмех=Рпот/КПДв, где КПДв=КПДво КПДвнут=КПДво(2h/(Н+h)!!!
  
   эмпирически эффективность на стопе КПДвнут=0.5(Сумах n D/H)^0.25, где  n-кол-во лопастей
+
   эмпирически эффективность на стопе КПДвнут=0.32(Сумах n D/H)^0.5, где  n-кол-во лопастей
  
электрическая мощность в полёте для авиамоделей типа паркфлай c учетом полного кпд вмг 40%-50% это произведение текущей тяги равной силе общего сопротивления на текущую воздушную скорость ла
+
электрическая мощность в полёте для авиамоделей типа "парк-флай" c учетом полного кпд вмг 40%-50% это произведение текущей тяги равной силе общего сопротивления на текущую воздушную скорость ла
 
   
 
   
   I U =Fx Vпол/КПДвмг=(2-2.5)Fx Vпол=Fст Vмах, где  Vпол=Куп Но f=0.8 х (1.25Н)f=Нf----в м/с
+
   I U =Fx Vпол/КПДвмг=(2-2.5)Fx Vпол=Fст Vмах, где  Vпол=Купор Но f=0.8 х (1.25Н)f=Нf----в м/с
  
  
Строка 113: Строка 110:
 
Так как ла полетит на винте любого размера и на маленьком скоростном и на большом медленном --- лишь бы тяги хватило!!! Но всегда существует "золотой винт" с оптимальными параметрами в зависимости от аэродинамики и размеров конкретного ла, который обеспечит максимальную эффективность (КПДвнеш)в заданном режиме полёта!
 
Так как ла полетит на винте любого размера и на маленьком скоростном и на большом медленном --- лишь бы тяги хватило!!! Но всегда существует "золотой винт" с оптимальными параметрами в зависимости от аэродинамики и размеров конкретного ла, который обеспечит максимальную эффективность (КПДвнеш)в заданном режиме полёта!
  
Ометаемая площадь винтом или так называемый волшебный диск и полный мидель планера имеют оптимальную зависимость от режима полёта и класса ла ----
+
 
 +
"Волшебный диск"
 +
 
 +
Ометаемая площадь винтом или так называемый "волшебный диск" и полный мидель планера имеют оптимальную зависимость от режима полёта и класса ла ----
  
 
Мидель всего планера определяет полное аэродинамическое сопротивление полёту, а ометаемая площадь винтом определяет тягу на установившейся скорости в горизонте ---- или как эффективно протащить тушку самолёта сквозь плотность воздуха Fпол=Fсопр!
 
Мидель всего планера определяет полное аэродинамическое сопротивление полёту, а ометаемая площадь винтом определяет тягу на установившейся скорости в горизонте ---- или как эффективно протащить тушку самолёта сквозь плотность воздуха Fпол=Fсопр!
Строка 129: Строка 129:
 
D=(Сумах Sкр Кск^Х/ АКмах)^0.5
 
D=(Сумах Sкр Кск^Х/ АКмах)^0.5
  
для одновинтовой схемы минимальный диаметр пропеллера всех типов крылатых дронов на минимальном крейсере Кск=1.25^Х-----Dв=1.12 CAXкр (Cyмах /Как)^0.5
+
для одновинтовой схемы минимальный диаметр пропеллера всех типов крылатых дронов на минимальном крейсере Кск=1.5-----Dв=1.12 CAXкр (Cyмах /Как)^0.5
  
  
Строка 153: Строка 153:
 
  У винта с Ш к Д 0.3 типичного для мультироторных  вмг АКВ=10!
 
  У винта с Ш к Д 0.3 типичного для мультироторных  вмг АКВ=10!
  
  У сверхскоростных импеллеров, где шаг в три раза больше диаметра  крыльчатки АКВ=1!
+
  У сверхскоростных импеллеров, где шаг в три раза больше диаметра  крыльчатки АКВ=1![https://www.youtube.com/watch?v=0au2IA4uUok]
 +
 
 +
Термин "Волшебный диск" или ометаемая площадь винтом объединяет механику осевого потока воздуха с аэродинамической тягой лопастей пропеллера движущихся с окружной скоростью по правилу текущего аэродинамического качества винта АКВтек=Vокр/Vосев= ПИ/Кв=3.14D/Н=2.5D/hтек-----смотри статью "инженеринг винта".
 +
 
 
[[Файл:пе-2.jpg]]
 
[[Файл:пе-2.jpg]]

Текущая версия на 09:40, 17 ноября 2024

ТПС----автор Книжников ВВ

Из институтского курса лопаточных машин винт(пропеллер) и крыльчатка(импеллер) это всё разновидности движителей которые преобразуют механическую мощность вращения вала двигателя в кинетическую мощность потока среды как интеграл тяги по скорости потока!!!Эта теория корректно описывает скоростные винты и импеллера

В науке о пропульсивных системах (движителях) существует несколько определений КПДвинта,где первые значения для размерности авиамоделей, вторые для малой и третьи для большой авиации

1)Начальный КПДво=(0.9мод--0.95мал---0.99бол)=(90%-95%-99%)!!!---это потери на профильное сопротивление лопаток(лопастей) и силу трения от шероховатости поверхности,а также сопротивление нерабочей части винта (ступица и кок),

2)Внутренний КПДвнут=Pпоток/Рмех=(0.4--0.95)=(40%-95%)!!!---это потери на создание кинетической мощности осевого потока, как потери энергии на закручивание потока, срыв потока и вихри на кончиках лопастей(режим статики---например висение коптера или эффективность по тяге на стопе),

3)Внешний КПДвнеш=Fтяги Vпол/Pмех=Кво Кпроп=(0%-90%)!!! или полный коэф.пропульсивной системы---это приведённая эффективность всей пропульсивной системы к движению транспорта относительно среды(режим динамики---например горизонтальный полёт самолёта или эффективность по скорости движения в вязкой среде).

более подробно смотри статью "КПД винта"


Поступь винта

Поступь это истинный шаг винта h относительно воздуха----винт всегда работает только относительно среды и он не знает, двигается ли он относительно земли , а проскальзывание винта задаёт угол атаки лопастей , когда винт ускоряет начальный поток в плоскости винта то находиться в режиме создания положительной тяги или движитель и поступь меньше геометрического шага---- когда винт тормозит набегающий поток, то режим генератора или обратной тяги и поступь больше шага винта ----так работают ветряки!

поступь на стопе прямо пропорционально зависит от кол-ва лопастей (n) и коэф.подъёмной силы (Сулоп) --- h=0.36(H D )^0.5 (п)^0.33 (Сулоп)^0.5


Поступь практическая на стопе для широких двухлопастных винтов с вогнутовыпуклым профилем типа слоуфлаер для мультикоптера----hкоп=0.6(H D)^0.5

Поступь практическая на стопе для узких двухлопастных винтов с плосковыпуклым профилем для самолёта---- hсам=0.5(H D)^0.5

Произведение поступи на частоту вращения и есть осевая скорость потока в сечении плоскости  винта----  Vв(м/с)=h(м) f(1/с)

Соотношение текущей поступи к шагу от стопа до максимальной горизонтальной скорости---- это коэффициент упора! Купор=h/Hо=(0.3--0.9)


Скольжение и угол атаки


В упругой среде типа газ под давлением или воздух идеальный винт вкручивается за один оборот на расстояние истиной поступи, которая меньше геометрического шага винта на длину проскальзывания!

Соотношение длины проскальзывания к шагу называется коэффициентом скольжения или Кскол и он определяет угол атаки лопасти! Кскол=(Но-h)/Hо=(0.7--0.1)
  
фундамент. тождества Купор+Кскол=1

скольжение деленное на длину окружности текущего радиуса винта и есть арксинус угла атаки потока к сечению лопасти!

Вывод----- при уменьшении скольжения  увеличивается упор и кпд идеального винта по тяге на стопе!


Реактивная тяга

Теория пропульсивных систем или движителей типа гребных винтов, пропеллеров, крыльчаток турбин, плавников, насосов и реактивных ракетных двигателей основана на классической фундаментальной теории об реактивном движении Ньютона или любое действие вызывает противодействие------то есть при непрерывном отбрасывании массы назад со скоростью приращения, система получает импульс движения вперёд или реактивную тягу!


Математически сила тяги в ньютонах---это произведение массового расхода рабочего тела (килограмм  в секунду) на приращение скорости отбрасывания этого тела (метров в секунду)!----Fтяг=(dm/dt)delta V 

Массовый расход рабочего тела (кг/с)----это произведение плотности (кг/м3) на объёмный расход (м3/с) или плотность (кг/м3) на сечение ометаемой поверхности круга винтом (м2) на входную скорость потока (м/с)! dm/dt=pо S Vвх, где Vвх=(Vпот+Vпол)/2


Приращение скорости потока в полёте у винта---это разница выходной скорости за винтом и входной набегающей перед винтом(м/с)----- Vпр=(Vпоток-Vполёт)


Fтяг =КПДво pо Sомет (Vпот+Vпол)(Vпот-Vпол)/2=0.45D^2 (Vпот^2-Vпол^2)----общее уравнение тяги в полёте, Sомет=(Пи/4)D^2=0.78D^2

Начальный коэф. реального винта КПДво зависит от конструктива и расположения ---- в длинном импеллере 0.8 в коротком импеллере 0.83, в носу тупого фюзеляжа 0.85 , в носу тонкой мотогондолы 0.9, в хвосте ла 0.95.

Плотность воздуха на уровне моря принять за константу pо=1.25 кг/м3, то справедливы формулы расчёта на стопе

На стопе считается, что скорость полёта равна нулю и скорость потока за винтом Vпот=Vв(2)^0.5-----воронкообразное течение!


Fст=0.5КПДво pо Sомет Vпот^2=КПДво pо(0.78D^2) Vв^2=(0.85тян--0.9тол) (D h f)^2----------формула Книжникова для пропеллера на стопе на уровне моря

1)Хар-ка винта по поступи=h(м)=(0.5сам--0.6коп)(D Н)^0.5 и частоте вращения--------осевая скорость потока на стопе Vв(м/с)=(h) f

2)Хар-ка винта по тяговой тяжести=0.7 ро D^2 h^2 (Н/Гц^2) и квадрату частоты вращения-----сила тяги на стопе Fст(Н)=(0.1ро Сулоп D^3 Н п^0.67) f^2

3)Хар-ка винта по мощностной тяжести=0.7 ро D^2 h^3 (Вт/Гц^3) и кубу частоты вращения---------мощность потока на стопе Рпот(Вт)=(0.2 D^3 Н^2) f^3


 мощность(вт) потока от винта это произведение тяги на скорость потока в плоскости винта Pпот=Fст h f 
 механическая мощность на валу для ДВС это соотношение мощности потока к кпд винта  Рмех=Рпот/КПДв, где КПДв=КПДво КПДвнут=КПДво(2h/(Н+h)!!!
 эмпирически эффективность на стопе КПДвнут=0.32(Сумах n D/H)^0.5, где  n-кол-во лопастей

электрическая мощность в полёте для авиамоделей типа "парк-флай" c учетом полного кпд вмг 40%-50% это произведение текущей тяги равной силе общего сопротивления на текущую воздушную скорость ла

  I U =Fx Vпол/КПДвмг=(2-2.5)Fx Vпол=Fст Vмах, где  Vпол=Купор Но f=0.8 х (1.25Н)f=Нf----в м/с


Пропульсивный коэффициент

квадрат соотношения скоростей полёта ла к  потоку от движителя называется пропульсивным коэф. Кпроп=(Vпол/Vпот)2

и на прямую связан с кпд транспортной системы в целом----первые значения для малой авиации вторые для авиамоделей

Кпроп= 0.9-0.8 на пике скорости и на крейсере----КПДвнеш=80%-60%
Кпроп= 0.85-0.75 на вираже ----КПДвнеш=70%-50%

Кпроп= 0.8-0.7 на максимальной скороподъёмности при наборе высоты ----КПДвнеш=60%-45%

Поэтому не выгодно использовать прямой трд на относительно малых скоростях полёта----там скорость потока или истечения струи газов 400-600 м в с , а наши до звуковые скорости полета всего 20-50 м / с, но вот преобразовать мощность трд в медленное вращение большого винта выгодно ---------скорость потока от винта чуть больше и сравнима со скоростью полета! Турбовинтовые и турбо-вентиляторные востребованы в большой авиации на около звуковых скоростях!

Разность скоростей потока и полёта это  приращение или реактивная составляющая скорости -----поэтому эти движители и называются пропульсивными системами по реактивному  закону Ньютона о количестве движения!
График зависимости падения силы тяги от стопа до максимальной скорости полёта в пике и рост динамического(пропульсивный) КПДв по скорости для Кв=0.8!

Так как ла полетит на винте любого размера и на маленьком скоростном и на большом медленном --- лишь бы тяги хватило!!! Но всегда существует "золотой винт" с оптимальными параметрами в зависимости от аэродинамики и размеров конкретного ла, который обеспечит максимальную эффективность (КПДвнеш)в заданном режиме полёта!


"Волшебный диск"

Ометаемая площадь винтом или так называемый "волшебный диск" и полный мидель планера имеют оптимальную зависимость от режима полёта и класса ла ----

Мидель всего планера определяет полное аэродинамическое сопротивление полёту, а ометаемая площадь винтом определяет тягу на установившейся скорости в горизонте ---- или как эффективно протащить тушку самолёта сквозь плотность воздуха Fпол=Fсопр!

Fпол=0.5pо Sомет (Vпот^2-Vпол^2)-----Fсопр=0.5pо Vпол^2 ( Cxмид Sмид)

Sомет (Vпот^2-Vпол^2)=Vпол^2 Cуопт Sкр / АКтек, где Vпот^2/Vпол^2=1.3^2=(Сулоп/Сумах)^2=1/Купор^2----коэф. обратный пропульсивному КПДв

0.78 КПДво D^2 (1/(Купор)^2-1)= (0.62 Cумах) Sкр (0.8 Кск^Х/ АКмах)

0.78 х 0.9 D^2 (1.7-1)=0.5 Cумах Sкр Кск^Х/ АКмах

0.7 D^2 х 0.7 =0.5 Cумах Sкр Кск^Х/ АКмах

D=(Сумах Sкр Кск^Х/ АКмах)^0.5

для одновинтовой схемы минимальный диаметр пропеллера всех типов крылатых дронов на минимальном крейсере Кск=1.5-----Dв=1.12 CAXкр (Cyмах /Как)^0.5


Тяга и КПДв.jpg

Много-лопастность

Про много лопастность винта--- физически доказано по закону Ломоносова что массово-секундный расход воздуха через ометаемую площадь винта равен тому же массовому количеству воздуха в секунду взаимодействующего с однолопастным винтом за один оборот,то после математических выкладок получается, что поступь винта h на стенде равняется толщине потока работающего с лопастью ! или трем-четырем ширинам лопасти В в её середине при оптимальных углах атаки h=(3-4)В Отсюда вытекает, что при малом соотношении шага к диаметру винта 0.05-0.15 характерных тяговым и в особенности вертолётным лопастям получаются очень узкими с большим удлинением лопастей 20-30 ! а коэффициент перекрытия или соотношение суммы площадей всех лопастей(обычно 2-4 штуки) к ометаемой винтом очень низок 0.01-0.02 и малы рабочие углы атаки лопастей 1-2 градуса! Так как однолопастный винт с относительно большим шагом имеет малое удлинение лопасти а значит и высокое индуктивное сопротивление, то расщепление на энное кол-во лопастей для сохранение высокого аэродинам. качества винта в целом выгодно h=(3-4)В n -----где В=ширина лопасти в её середине , n кол-во лопастей! Далее получается. что при увеличении геометрического шага винта, а значит и поступи надо увеличивать ширину лопастей или их кол-во ,выгоднее кол-вом чтобы удлинение осталось прежне высоким! Поэтому в импеллерах, где шаг изначально большой и составляет 3-4 диаметра крыльчатки получаем большое кол-во лопастей ---доходит до 40 штук у турбо-вентиляторных вмг размером до 3-4 метров в диаметре, а коэффициент перекрытия достигает единицы!

смотри также статью "инженеринг винта"


Аэродинамическое качество винта

У винта как движителя есть понятие приведенного аэродинамического качества к радиусу----АКВ=3.14 D/H---- это характеризует относительный момент сопротивления вращению или реактивный момент от винта , который скручивает планер по продольной оси в противоположную сторону направления вращения . например АКВ квадратного винта = 3.14 -----то есть сила сопротивления вращению в 3.14 раза меньше силе тяги----но и скорость осевого потока также в 3.14 меньше чем окружная скорость кончиков лопастей в полёте!

У винта с Ш к Д 0.3 типичного для мультироторных  вмг АКВ=10!
У сверхскоростных импеллеров, где шаг в три раза больше диаметра  крыльчатки АКВ=1![1]

Термин "Волшебный диск" или ометаемая площадь винтом объединяет механику осевого потока воздуха с аэродинамической тягой лопастей пропеллера движущихся с окружной скоростью по правилу текущего аэродинамического качества винта АКВтек=Vокр/Vосев= ПИ/Кв=3.14D/Н=2.5D/hтек-----смотри статью "инженеринг винта".

Пе-2.jpg

Личные инструменты
Пространства имён
Варианты
Действия
Навигация
Инструменты
Группа ВКонтакте